000897480 001__ 897480
000897480 005__ 20230123101846.0
000897480 0247_ $$2doi$$a10.1016/j.rse.2021.112718
000897480 0247_ $$2ISSN$$a0034-4257
000897480 0247_ $$2ISSN$$a1879-0704
000897480 0247_ $$2Handle$$a2128/30999
000897480 0247_ $$2WOS$$aWOS:000708567400002
000897480 037__ $$aFZJ-2021-03813
000897480 041__ $$aEnglish
000897480 082__ $$a550
000897480 1001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b0$$eCorresponding author
000897480 245__ $$aSpatio-spectral deconvolution for high resolution spectral imaging with an application to the estimation of sun-induced fluorescence
000897480 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000897480 3367_ $$2DRIVER$$aarticle
000897480 3367_ $$2DataCite$$aOutput Types/Journal article
000897480 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649251284_16457
000897480 3367_ $$2BibTeX$$aARTICLE
000897480 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897480 3367_ $$00$$2EndNote$$aJournal Article
000897480 520__ $$aWe propose a signal deconvolution procedure for imaging spectrometer data, where a measured point spread function (PSF) is deconvolved itself before being used for deconvolution of the signal. We evaluate the effectiveness of our procedure for improvement of the spatio-spectral signal, as well as our target application, i.e. estimation of sun-induced fluorescence (SIF). Imaging spectrometers are well established instruments for remote sensing. When used for scientific purposes these instruments are usually calibrated on a regular basis. In our case the point spread function of the optics is measured in an elaborate procedure with a tunable monochromator point light source. PSFs are measured at different pixel positions of the imaging sensor, i.e. at different spatio-spectral locations, and averaged in order to get an as accurate PSF as possible. We investigate error sources in this calibration process by simulating the procedure in silico. Averaging as well as the spectral and spatial width of the point source introduce some smoothness in the measured PSF. We propose corrective measures, i.e. deconvolution of the PSF itself and median instead of mean averaging, leading to a set of sharper PSFs. We test the performance of these PSFs in deconvolving simulated as well as real hyperspectral images. For deconvolution we test a set of well-known, off the shelf deconvolution algorithms. Quantitatively in terms of PSNR (Peak Signal to Noise Ratio) a combination of Wiener filtering and sharpened PSFs yields strongest improvements, while using Wiener filtering with non-sharpened PSFs even deteriorates the signal. Comparing deconvolution results of the simulated data with results of real data reveals, that visually very similar effects can be observed. This well supports the assumption, that our findings are also valid for real spatio-spectral data. Surprisingly, the choice of PSF, sharpened or not, is of little effect for SIF estimation with the iFLD algorithm in the O2A band. Quantitatively we find that deconvolution reduces the overall error of SIF by a factor of 3.8, when using Wiener filtering instead of the currently used 1 iteration of vanCittert's method. For SIF estimation in the O2B band we observe a totally different behavior, where all deconvolution methods yield unreliable results with mostly well above 200% relative error and high standard deviations. In the discussion we can only speculate on possible reasons for this unreliability. As conclusion we therefore propose to use the O2A band for SIF estimation together with classic Wiener filtering for deconvolution of spatio-spectral data.
000897480 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000897480 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897480 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b1$$ufzj
000897480 7001_ $$0P:(DE-HGF)0$$aAlonso, Luis$$b2
000897480 7001_ $$0P:(DE-HGF)0$$aCogliati, Sergio$$b3
000897480 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b4$$ufzj
000897480 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2021.112718$$gVol. 267, p. 112718 -$$p112718 -$$tRemote sensing of environment$$v267$$x0034-4257$$y2021
000897480 8564_ $$uhttps://juser.fz-juelich.de/record/897480/files/Invoice_OAD0000151691.pdf
000897480 8564_ $$uhttps://juser.fz-juelich.de/record/897480/files/1-s2.0-S0034425721004387-main.pdf$$yOpenAccess
000897480 8767_ $$8OAD0000151691$$92021-10-08$$d2021-10-13$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200172070
000897480 909CO $$ooai:juser.fz-juelich.de:897480$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000897480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b0$$kFZJ
000897480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b1$$kFZJ
000897480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b4$$kFZJ
000897480 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000897480 9141_ $$y2022
000897480 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2019$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS ENVIRON : 2019$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897480 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000897480 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000897480 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897480 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000897480 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000897480 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
000897480 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000897480 980__ $$ajournal
000897480 980__ $$aVDB
000897480 980__ $$aUNRESTRICTED
000897480 980__ $$aI:(DE-Juel1)IAS-8-20210421
000897480 980__ $$aI:(DE-Juel1)IBG-2-20101118
000897480 980__ $$aAPC
000897480 9801_ $$aAPC
000897480 9801_ $$aFullTexts