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A B S T R A C T   

We propose a signal deconvolution procedure for imaging spectrometer data, where a measured point spread 
function (PSF) is deconvolved itself before being used for deconvolution of the signal. We evaluate the effec-
tiveness of our procedure for improvement of the spatio-spectral signal, as well as our target application, i.e. 
estimation of sun-induced fluorescence (SIF). Imaging spectrometers are well established instruments for remote 
sensing. When used for scientific purposes these instruments are usually calibrated on a regular basis. In our case 
the point spread function of the optics is measured in an elaborate procedure with a tunable monochromator 
point light source. PSFs are measured at different pixel positions of the imaging sensor, i.e. at different spatio- 
spectral locations, and averaged in order to get an as accurate PSF as possible. We investigate error sources in 
this calibration process by simulating the procedure in silico. Averaging as well as the spectral and spatial width 
of the point source introduce some smoothness in the measured PSF. We propose corrective measures, i.e. 
deconvolution of the PSF itself and median instead of mean averaging, leading to a set of sharper PSFs. We test 
the performance of these PSFs in deconvolving simulated as well as real hyperspectral images. For deconvolution 
we test a set of well-known, off the shelf deconvolution algorithms. Quantitatively in terms of PSNR (Peak Signal 
to Noise Ratio) a combination of Wiener filtering and sharpened PSFs yields strongest improvements, while using 
Wiener filtering with non-sharpened PSFs even deteriorates the signal. Comparing deconvolution results of the 
simulated data with results of real data reveals, that visually very similar effects can be observed. This well 
supports the assumption, that our findings are also valid for real spatio-spectral data. Surprisingly, the choice of 
PSF, sharpened or not, is of little effect for SIF estimation with the iFLD algorithm in the O2A band. Quantita-
tively we find that deconvolution reduces the overall error of SIF by a factor of 3.8, when using Wiener filtering 
instead of the currently used 1 iteration of vanCittert’s method. For SIF estimation in the O2B band we observe a 
totally different behavior, where all deconvolution methods yield unreliable results with mostly well above 200% 
relative error and high standard deviations. In the discussion we can only speculate on possible reasons for this 
unreliability. As conclusion we therefore propose to use the O2A band for SIF estimation together with classic 
Wiener filtering for deconvolution of spatio-spectral data.   

1. Introduction 

Photosynthetic light conversion constitutes the main biochemical 
reaction that ultimately fuels all life on earth by converting the energy of 
the solar radiation into biochemically usable energy compounds. During 
the process of photosynthesis, plants absorb solar radiation in their 

photosynthetic pigments, stabilize this energy in the electron transport 
chain of photosynthetic light reaction, and finally use the energy for 
carbon fixation. As a side product of photosynthesis a small fraction of 
the absorbed energy is re-emitted as a weak red fluorescence light (the 
so-called chlorophyll fluorescence), which changes intensity in relation 
to the efficiency of the photosynthetic processes. 
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The close link between the functional status of photosynthesis and 
the intensity of the chlorophyll fluorescence signal had fostered the 
development of various instruments and measurement approaches that 
exploit the chlorophyll fluorescence signal as a non-invasive reporter of 
the functional status of photosynthesis (Murchie et al., 2018). Most of 
the established fluorescence measurement protocols are active ap-
proaches, which work on the single leaf level and where the fluorescence 
signal is stimulated by specific measurement lights. However, in recent 
years the measurements of sun-induced fluorescence (SIF) have gained 
wide scientific interest (see e.g. (Mohammed et al., 2019) for a recent 
review), which was lately stimulated by the selection of the FLEX sat-
ellite mission by the European Space Agency (Drusch et al., 2017). 

Even though SIF is not easy to interpret physiologically, SIF opens 
the unique possibility to be measured passively also from remote sensing 
platforms (see e.g. (Damm et al., 2014; Guanter et al., 2012; Köhler 
et al., 2018)). Thus, by exploiting SIF we may have the unique possibility 
to quantify actual rates of photosynthesis on the large, i.e. ecosystem 
and global scale and to quantify actual rates of photosynthesis from 
remote sensing platforms (Mohammed et al., 2019). 

Sun-induced fluorescence is a rather weak signal that in practice is 
masked by much stronger intensities of reflected light. Thus, SIF mea-
surements often exploit solar and telluric absorption features, where the 
emitted fluorescence signal is relatively larger than the reflected back-
ground light (Meroni et al., 2009). There are several solar and telluric 
absorption features in the spectral window where chlorophyll fluores-
cence is emitted and most commonly the atmospheric oxygen absorption 
features around the oxygen absorption band A and B (O2A and O2B 
band) are used to retrieve SIF. The O2A band at 761 nm is ~2 nm wide 
and thus SIF can most easily be retrieved using this absorption feature 
(Damm et al., 2014). However, the O2B band as well as small band solar 
absorption lines (so-called Fraunhofer lines) have also been used to 
retrieve SIF (Guanter et al., 2012; Köhler et al., 2018). For retrieving SIF 
in the absorption features the Fraunhofer Line Discrimination (FLD) 
method can be used, which in the strict sense only requires one mea-
surement outside and one measurement inside the absorption feature to 
quantify fluorescence (Plascyk and Gabriel (1975), Moya and Cerovic 
(2004), cmp. Section 2.6). 

Nowadays spectrometers with high spectral resolution are used for 
SIF measurements, which can be either point spectrometers or imaging 
systems. Push broom line scanning spectrometers record spatio-spectral 
signals by means of a bi-dimensional sensor where the spatial informa-
tion is collected in one dimension while spectral information is captured 
along the other dimension. 

Ideally, a monochromatic point light source should produce a single 
pixel response. In real systems this is not the case, and the resulting 
signal spreads across the sensor matrix according to the Point Spread 
Function (PSF) (Siegmann et al., 2019; Jähne, 2005; Jähne et al., 1999), 
an ubiquitous point of consideration in remote sensing (see e.g. McGil-
lem et al. (1983), Huang et al. (2002), Peng et al. (2015), Waldner et al. 
(2018), Wang et al. (2020a,b)). For SIF retrievals from airborne and 
satellite platforms a detailed characterization of the PSF of a measuring 
system, including the degree of straylight is essential to account for in-
strument and atmospheric effect during signal acquisition (Barnes et al., 
2010; Sabater et al., 2018). Also for dedicated SIF imaging spectrome-
ters the optical characterization includes a description of the point 
spread characteristics of the system (Siegmann et al., 2019; Paynter 
et al., 2020). 

Point-spead characteristcs and stay light most severely affect pixels 
with contrasting values in neighboring pixels, which in practice occurs 
at the absorption features, which are used for SIF retrievals, at narrow 
emission peaks, or at objects that have greatly different brightness at 
edges. In these cases some energy from a pixel with, high signal in a band 
of one surface can be transferred to a neighboring pixel and even very 
weak relative contributions in the PSF, can result in a noticeable effect at 
the weakly illuminated pixel. This effect is an inherent challenge for SIF 
retrievals, where the signal is extracted across spatially sharp absorption 

features (influence of the spectral effect of the PSF) and where edges 
between bright and dark surfaces shall be resolved (e.g. bright back-
ground vs. ‘dark’ vegetation reflectance with a superimposed fluores-
cence signal; influence of the spatial effect of the PSF). 

Deconvolution is a well-known counter measure to the PSF effect 
(Wiener, 1942; Lucy, 1974; Richardson, 1972; Jähne, 2005). Even 
though well understood and theoretically well-founded, deconvolution 
is only an optional step in the currently established processing pipeline 
for HyPlant (Siegmann et al., 2019). There, only one iteration of van 
Cittert’s method (Jähne, 2005) (see also Eqs. (6) and (7)) is recom-
mended as more iterations deteriorate results. In experiments and dis-
cussions we use one iteration of van Cittert’s method as baseline. 
Stronger acting deconvolution methods like Wiener filtering (Wiener, 
1942) are not considered by Siegmann et al. (2019), even though Wiener 
filtering should optimally reconstruct the signal and therefore yield 
better results. In this paper, we investigate why stronger deconvolution 
with the PSF known from specific calibration measurements leads to 
undesirable results and propose a simple but effective sharpening of the 
measured PSF before applying strong deconvolution. 

This work presents a quantification of PSF effects through a theo-
retical analysis of the impact of the PSF on push-broom spectrometers. A 
correction by means of a strong deconvolution process is proposed and 
its quantitative effect investigated on synthetic data. To this end realistic 
high-resolution radiance and SIF spectra were simulated in silico using 
state-of-the art radiative transfer models for plant canopies and atmo-
sphere. Synthetic spectral images with the same characteristics as real 
spectral images from the HyPlant airborne hyperspectral imager 
(Rascher et al., 2015; Siegmann et al., 2019) were composed from the 
simulated spectra. They allow a quantitative evaluation of the impact of 
the PSF and the possible deconvolution on SIF retrievals from real world 
spectrometers. Experiments reveal that the signal quality of the spectral 
images improves strongly when using our proposed deconvolution 
method compared to the baseline from Siegmann et al. (2019) (Peak 
Signal to Noise Ratio (PSNR) increases from 36.7 to 40.3). The positive 
effect is even stronger for SIF estimates, where the mean squared error 
drops by a factor 3.8 and thus strongly improves reliability of SIF 
measurements. Qualitative comparisons between effects of different 
deconvolution approaches on synthetic data versus real HyPlant data 
indicate the validity of the presented findings also for real data. 

2. Materials and methods 

In our experiments we use real and synthetic hyperspectral imaging 
data, as well as measured and simulated calibration data to derive the 
sensors point spread function and use it for deconvolution. 

The real data stems from an airborne imaging spectrometer HyPlant, 
more specifically from the so-called FLUO module of the HyPlant sensor 
(Rascher et al. (2015), Siegmann et al. (2019), see also Section 2.2). In 
the following, we discuss image formation in the light of its special 
properties (Section 2.2). We derive, how its PSF can be estimated from 
calibration data (Section 2.4), and how noise and therefore the 
signal-to-noise ratio can be estimated (Section 2.3). These are needed as 
input to well-known deconvolution algorithms, which we also briefly 
discuss in Section 2.1. In Section 2.5 we describe, how synthetic image 
are simulated, based on synthetic calibration data, allowing quantitative 
experiments later in Section 3. We briefly introduce sun induced fluo-
rescence (SIF) retrieval (Section 2.6), as we use a retrieval of SIF to 
investigate the effect of deconvolution on this small signal component. 
Finally, a description of error measures used in Experiments is given in 
Section 2.7. Flowcharts in Fig. 1 give overview of components and their 
interaction in the workflows for (i) PSF calibration (cmp. Fig. 1, bottom), 
as well as (ii) the overall processing including deconvolution and sub-
sequent SIF estimation (cmp. Fig. 1, top). There we also indicate in 
which sections the respective descriptions are to be found. 

Before going into imaging details, we discuss the different decon-
volution algorithms used in this study. 
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2.1. Deconvolution algorithms 

Signal deconvolution is a well-explored problem and a wide selection 
of deconvolution algorithms is available in textbooks (Jähne, 2005; 
Gonzalez and Woods, 1992) and image processing toolboxes (Math-
Works, Inc., 1994; van der Walt et al., 2014). For our experiments, we 
used the Matlab image processing toolbox (MathWorks, Inc., 1994). One 
distinguishes between ‘blind’ and ‘non-blind’ algorithms, where ‘non--
blind’ algorithms need an exactly characterized PSF as input, and ‘blind’ 
deconvolutions can update the initial PSF. The core idea of deconvolu-
tion algorithms is to undo the convolution of the signal I with the PSF φ. 
According to the convolution theorem of Fourier transform (see e.g. 
Jähne (2005)), 

φ ∗ I = ℱ− 1(φ̂⋅Î) (1)  

convolution * of φ and I in image domain is equivalent to point-wise 
multiplication ⋅ of the transfer functions φ̂ = ℱ(φ) and Î = ℱ(I), 
where ℱ denotes Fourier transform and ℱ− 1 its inverse. Let us denote 
the measured signal or image by I0. According to the convolution the-
orem, without noise and when φ̂ ∕= 0 everywhere, deconvolution is 
simply pointwise division by φ̂ of I0 in Fourier domain Ideconv =

ℱ− 1(φ̂− 1 ⋅̂I0). As φ typically is a damping function with |φ̂| < 1 almost 
everywhere, division by φ̂ means signal amplification. Consequently, 
noise is also amplified when present in the signal. Methods implemented 
in Fourier domain thus often distinguish between regions with low noise 
(SNR < 1), where division by φ̂ is applied, and regions with high noise 
(SNR > 1), where it is not applied, or the signal is even further damped. 
Adequate noise handling is therefore essential to deconvolution methods 
and our studies (cmp. also Section 2.3). 

In our experiments we investigated the performance of five decon-
volution methods:  

• Wiener filtering (Wiener (1942), Gonzalez and Woods (1992), 
abbreviated deconvwnr): The Wiener filter is designed to minimize 
the expected mean square error between the measured noisy signal 
Imeasured and its reconstruction Ideconv, when SNR and PSF φ are 
known. This is achieved by 

Ideconv = ℱ− 1
(

φ̂∗

φ̂⋅φ̂∗
+ SNR− 1⋅Î 0

)

(2)  

where * denotes complex conjugation. From the equation we see, 
that for high SNR Wiener filtering implements pointwise division by 
φ̂ and for low SNR the signal is damped.  

• Regularized deconvolution (MathWorks Inc. (2021), Gonzalez and 
Woods (1992), abbreviated deconvreg): This method is similar to 
Wiener filtering, however, the regularization wrt. SNR is imple-
mented differently: 

Ideconv = ℱ− 1
(

φ̂∗

φ̂⋅φ̂∗
+ λL̂⋅L̂

∗⋅Î 0

)

(3)  

where L is a Laplacian operator and λ a parameter determined by 
minimization such that the power of the deconvolution residuals 
near equals the noise power.  

• The Lucy-Richardson algorithm with 7 or 12 iterations (Richardson 
(1972), Lucy (1974), Biggs (1997), Hanisch et al. (1997), abbrevi-
ated LucyRichards7 and LucyRichards12): Here Ideconv = In is the 
output In of an iterative scheme after n iterations: 

Ii+1 = (φT ∗
I0

φ ∗ Ii
)⋅Ii (4)  

with I0 being the measured signal as defined above and where φT is a 
mirrored version of φ (cmp. Fish et al. (1995, Eq. 3)). 

Fig. 1. Flowcharts. Boxes depict data, rounded off boxes are processing steps, and boxes rounded off at top left and bottom right are algorithms we focus on in this 
article, trapezoids are physical objects. Dashed arrows indicate application or properties of physical objects, solid arrows show input/output relations. Numbers 
indicate the sections, where to find respective descriptions in the text. Top: Overall processing pipeline for deconvolution and subsequent SIF estimation. Bottom: PSF 
derivation from calibration data, i.e. a zoom-in in the above box ‘Derive PSF’. 
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• A blind version of the Lucy-Richardson deconvolution scheme 
(MathWorks Inc., 2021; Fish et al., 1995): Here the above 
Lucy-Richardson iteration Eq. (4) updating the image is alternated 
with the same scheme applied to the PSF φ 

φi+1 = (IT
i ∗

I0

φi ∗ Ii
)⋅φi (5)  

where φ0 = φ and the updated PSF φi+1 is used for updates of the 
image in Eq. (4). 

• The non-blind vanCittert iterative update scheme with 1 or 3 itera-
tions (Jähne (2005), abbreviated vanCittert1 and vanCittert3): A 
discrete kernel K = δ − φ is defined, where δ is the identity operator 
of convolution, i.e. 1 at the origin and 0 else. This kernel is iteratively 
applied to the increment ΔI of image I: 

(ΔI)i+1 = K ∗ (ΔI)i (6)  

Ii+1 = Ii + (ΔI)i+1 (7)  

with (ΔI)0 = I0. 

In the practical handling vanCittert, Lucy-Richardson and blind decon-
volution have the advantage that one does not need to provide a noise 
level, but an easier to understand iteration number. 

All above algorithms require proper handling of image borders. 
Especially algorithms based on Fast Fourier Transform (FFT, (Heideman 
et al., 1984)), e.g. Wiener filtering or regularized deconvolution, would 
suffer from ringing artifacts without it and sophisticated boarder 
handling solutions exist (Skilling and Gull, 1985; Reeves, 2005; Simões 
et al., 2016). We use the widely adopted edge tapering (Skilling and 
Gull, 1985; MathWorks Inc, 2021) together with periodic padding, such 
that the original image region is unaffected by tapering. 

Recent deconvolution solutions (see e.g. Kruse et al. (2017), Wang 
et al. (2019), Ren et al. (2020)) address imaging artifacts like camera 
shake or motion blur, where PSFs are complicated and not well peaked. 
In such situations, machine-learning based algorithms dramatically 
outperform the above described well established simpler deconvolution 
algorithms. This increased performance comes at a cost, as such algo-
rithms contain sophisticated regularization terms which need to be 
adapted to or learned from training data. These regularization terms 
then formulate prior knowledge on the training data, which is good, 
when the measured data behaves like the training data, but introduce an 
unwanted and hard to control bias, when measured data differs from the 
training set. In the current study, we want to use prior knowledge on the 
signal as scarcely as possible, in order to avoid regularization bias; and at 
the same time use the available high-precision calibration data as much 
as possible. 

2.2. Image formation and data format 

The FLUO module of HyPlant is an imaging spectrometer designed 
for push-broom operation. It is commercially available under the name 
AisaIBIS (SPECIM, 2021) and described in more detail by Rascher et al. 
(2015), Siegmann et al. (2019). It features a spectral resolution of 2048 
pixels over the range of approx. 670 nm to 780 nm and thus a spectral 
pixel width of approx. 0.054 nm/pixel. The sensor has 1536 pixels in the 
spatial dimension. The usual operation mode is 2×4-binning, i.e. the 
sensor then acquires 1024×384 pixel spatio-spectral images, usually 
also called ’lines’, with 1024 spectral bands at 384 spatial positions. 

The real data we work with in our experiments below stems from a 
measurement campaign in 2016 (European Space Agency & For-
schungszentrum Jülich, 2016). It contains 301 spatio-spectral images, 
thus is a 3-dimensional data block of 1024×384×301, which we call 
Ireal(λ, x, t). Here λ is the spectral wavelength, x is the spatial position on 
the sensor, and t the time in the image sequence, acting as second spatial 
coordinate, as the sensor is operated in push-broom fashion. 

Collapsing the spectral dimension of this 3d block into suitable false 
colors yields therefore 2d spatial images like shown e.g. in Fig. 2, left. 
Each spatial pixel contains a spectrum, like the ones shown in Fig. 2, 
right. 

In the following, for simplicity, if not stated differently, we call the 
signal delivered by the sensor a 2d image or just image, even though it is a 
spectrally resolved spatial line. The spatio-spectral image is formed by 
the incoming light entering through a slit and being then defracted in the 
spectral direction by a grading, before hitting a 2d imaging sCMOS chip 
(Rascher et al., 2015). 

As any real optical system (cmp. e.g. (Jähne et al., 1999; Jähne, 
2005)), the sensor does not produce a perfectly sharp image, i.e. when a 
true spatial-spectral point source hits the sensor, the image does not just 
show a single illuminated pixel on black background, but spreads the 
peak over a small region on the sensor. The spatial response is usually 
called Point Spread Function (PSF) and the spectral response Instrument 
Spectral Response Function (ISRF) (Beirle et al., 2017; Jähne et al., 
1999). In the following, for simplicity, we call the 2d combination of PSF 
and ISRF, a spatial-spectral PSF or just PSF. 

Mathematically, image acquisition is modelled by several signal 
components. The incoming light is smoothed by being convolved with 
the PSF of the optical system. The light sensitive area of each pixel 
collects the incoming light, again convolving the so far spatially and 
spectrally continuous light signal by the pixel sensitivity function 
(typically assumed to be a square). Each pixel converts the incoming 
photons into an electric signal represented as a single number, i.e. the 
pixel intensity. The process performed by the pixels is usually called 
sampling. The pixel intensity contains noise stemming from the 
randomness of the number of photons hitting the sensor, called shot or 
photon noise, being Poisson distributed. The intensity is then discretized 
to a 16-bit representation, adding so called quantization noise, being 
uniformly distributed. Electronic components may add further noise, but 
for a high-end imaging spectrometer, where light is not only spatially 
distributed, but in addition also fragmented to different wavebands, the 
physically unavoidable photon noise is dominating (see e.g. Jähne et al. 
(1999)). 

Formation of a real image Ireal can thus in essence be summarized as 

Ireal(λ, x, t) = φ(λ, x) ∗ L(λ, x, t) + n(φ ∗ L) (8)  

where we omit the quantization and sampling steps for readability. We 
denote convolution by *. Noise n mainly depends on the radiance L as 
described above. Derivation of PSF φ from calibration data is described 
in Section 2.4 and estimation of the noise level next in Section 2.3. 

2.3. Noise estimation 

Some of the above deconvolution algorithms, i.e. Wiener filtering 
and regularized deconvolution, need to be informed about the noise 
level in the image or the signal-to-noise ratio. Noise-level estimation for 
general images from unknown sources can be quite involved (see e.g. Liu 
et al., 2013). Considering noise appropriately is highly important as it is 
a limiting factor for deconvolution. Low noise makes deconvolution 
trivial, as it can then be performed by pointwise division of the signal by 
the transfer function of the PSF in Fourier domain (see Section 2.1 and 
Eq. (1)). High noise, however, can make deconvolution impossible. 
Working with the correct noise level is therefore key to this study. In our 
application of high-resolution spatio-spectral remote sensing images, 
there are two simple options available to derive the appropriate noise 
level. 

One is to take the signal-amplitude dependent noise level derived in a 
radiometric calibration step, assuming that shot-noise is dominating. 
Radiometric calibration is performed by acquiring data while the sensor 
looks into a homogeneous, calibrated light source with continuously 
adjustable intensity; in our case an integrating sphere. The light source 
allowed to tune intensity from below detectable to sensor saturation (we 
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selected 100 steps), where for each intensity 100 images where taken. 
Noise is then estimated as variation around the per pixel mean. For the 
FLUO module of HyPlant, the variance of this noise approximately in-
creases linearly with 0.5 times pixel intensities. 

The other is to estimate noise from the current spatio-spectral image. 
This is what we do in our experiments, below. We perform this noise 
estimation in Fourier domain. There, shot noise is uniformly distributed 
over the whole domain, however, the expected signal is not. It is 
concentrated around the Fourier domain origin and strongly decays 
towards higher Fourier frequencies. Inspecting the 2d Fourier signal one 
observes a plateau at highest frequencies with a mean value being 
representative for the noise level. We estimate this mean value simply by 
averaging over the region of highest frequencies. To do so, we select the 
top quarter of frequencies in each dimension, as we observed that it 
consistently is completely dominated by noise. 

2.4. Derivation of the PSF 

In order to reveal the PSF of the FLUO module,a set of individual PSF 
measurements at 30 different spatio-spectral sensor locations has been 
acquired, as detailed below. From this raw data several processing steps 
need to be taken into account in order to get a reliable estimate of the 
true underlying PSF. 

2.4.1. Calibration measurements 
The PSF of the FLUO module has been characterized using a Lot-Oriel 

monochromator (MSH-300 (Quantum Design Europe, 2021)), i.e. a 
spectral point source with 0.14 nm bandwidth, combined with spatial 
subpixel accurate focusing with unknown spatial PSF φsource. Compared 
to the 0.054 nm spectral sampling of the FLUO module, the point source 
is about 2.5 pixel wide and thus cannot be considered to be a perfect 
point. Consequently the measured spatial-spectral PSF φmeasured of FLUO 
may need to be considered as a convolution of the true FLUO PSF φtrue 
and the source’s PSF φsource. 

PSF measurements were performed at six different wavelengths and 
five spatial positions on the sensor, i.e. 30 PSF instances overall. Visually 
inspecting the measurements revealed well noticeable asymmetries of 
the PSF peaks within their direct neighborhoods, i.e. their central 3×3 
pixel region, respectively for each peak. We conclude that the spatial- 
spectral center of the point source does not accurately coincide with a 
pixel center on the sensor. Subpixel shifts with respect to each peak’s 
center and the targeted pixel’s center may need to be considered in order 
to get a well-centered PSF. 

These measurement show noise in the range of 10− 5 with respect to 

the peak intensity. 

2.4.2. Averaging process 
When plotted on a logarithmic intensity scale, the PSF measurements 

differ visibly over the different sensor locations and wavelengths. 
Nevertheless, in this work, we consider deconvolution approaches 
assuming the signal to be degraded by a single, spatial and spectral non- 
varying PSF. In order to derive a single PSF from all 30 PSF instances, we 
considered different aggregation approaches as discussed in the 
following paragraphs. 

Pixel-accurate shifting of an equidistantly sampled signal is simple to 
perform, as the signal stays on the pixel grid. For strongly peaked sig-
nals, one can simply take the position of maximum and shift the signal 
such that the peak coincides with a predefined pixel location, e.g. the 
center of the image. Pixel-accurate shifting has the advantage, that no 
interpolation of the shifted signal is needed. This is especially important, 
when dealing with highly peaked signals like the PSF measurements, 
where interpolation can introduce severe artifacts. Subpixel-accurate 
shifting can easily be implemented in Fourier domain, where interpo-
lation is done implicitly (by sinc-interpolation). However, peaked sig-
nals often produce severe ringing artifacts, which can be reduced e.g. by 
suitably increasing resolution before shifting and reducing it afterwards. 
Nevertheless, hard to control artifacts remain, making results unreliable. 

A clear disadvantage of pixel-accurate shifting is that subpixel shifts 
present in the measurements are not corrected and thus produce an up to 
1 pixel diameter jitter between the aligned PSF measurements. When 
simply averaging over the aligned PSF measurements, this jitter in-
troduces additional blur to the resulting PSF. However, closely 
inspecting the measured PSFs, we observe, that the dominant part of 
them are not only monotonically decreasing with increasing distance 
from the peak, but they are mostly convex, i.e. their second order de-
rivative is positive almost everywhere except at the very peak location. 
For such PSFs, we may use other aggregation methods than averaging to 
reduce blurring or even sharpen the outcome. To explain this effect, 
consider a pixel left of the peak of a PSF. Comparing the effect of dis-
placements away from the ideal centered position, from the monotonic 
behavior it follows, that when moving the PSF to the right, the value 
observed at this pixel location will decrease. When moving the PSF to 
the left, the value observed at this pixel location will increase. As the 
signal is convex here, values increase stronger for off-center displace-
ments to the left than they decrease for the same displacement to the 
right. Consequently, when observing a representative set of randomly 
sampled instances of such a PSF at the same pixel location left off center, 
their mean will increase, resulting in a larger width of the PSF. Using the 

Fig. 2. Spatial-spectral real images. Left: Spatial component (384×301 pix) of real data Ireal in pseudo colors(For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.), where vegetation is green and soil is gray. Flight direction is to the right, spatial direction of 
the sensor vertical. Colored crosses indicate spatial positions of the spectra on the right. Right: Five spectra from Ireal. Legend gives their spatial pixel position in the 
left image. 
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median instead of the mean suppresses this effect. When we assume, that 
the positioning of the point source for calibration has been done inde-
pendently of the pixel grid, we expect the distribution of the true peak 
positions be uniformly distributed over the center pixel’s area. Then, the 
median position of the center is close to the middle of the center pixel. 
Thus the median delivers a PSF being as wide as the measured PSFs. At 
the peak location, the maximum is selected, corresponding to the best 
centered PSF. 

We call the PSF derived by mean φmean and by median φmedian. 

2.4.3. Sharpening PSFs 
Both PSFs φmean and φmedian are derived from calibration data being 

blurred by the light source’s, i.e. the monochromator’s PSF φsource (see 
Section 2.4.1). Thus, in order to make φmean and φmedian as similar to the 
unknown real PSF of the FLUO module, they should be deconvolved 
with φsource. To this end, without having more information on φsource 
than its spectral component being 0.14 nm wide, we model φsource as 
Gaussian. The spectral width of 0.14 nm corresponds to σs = 0.07 nm =
1.27 pix. For the spatial width, we observe in Fig. 3, that the measured 
PSF, being the unknown true PSF φtrue of the FLUO sensor convolved 
with the PSF φsource of the light source, is sharper in spatial direction 
than spectral direction. Assuming that half of the overall spatial width 
can be accounted to the light source and the other half to the FLUO 
sensor, leads to a spatial component σx = 0.8 pix for φsource. We use the 
same σx for the simulated, synthetic PSF φtrue,synth. of the sensor (see also 
Section 2.5). Larger σ’s for φsource lead to sharper PSFs for the FLUO 
sensor after deconvolution and thus to less sharpening and less noise 
amplification of the measured spatio-spectral data later on. Please note, 
that the uncertainty on the spatial part of the PSF of the light source used 
for calibration has no negative effect on the validity of our study, as 
quantitative experiments are performed on fully synthetic data, where 
this parameter is known. 

We deconvolve both PSFs φmean and φmedian using seven iterations of 
Lucy-Richardson deconvolution with φsource and get φmean,Lucy and 
φmedian,Lucy. In pre-experiments on convolution and deconvolution of 
peaked PSFs with Gaussians seven iterations provided pertinent sharp-
ening in a fully simulated setting. Fig. 3 depicts the four different PSFs 
used in our experiments with real data. 

2.5. Synthetic data and simulated calibration 

In order to be able to quantify effects of PSF aggregation (Section 
2.4.2) and PSF sharpening (Section 2.4.3) on hyperspectral image 
deconvolution, we simulated the full calibration process as well as im-
aging. To this end, we defined a ground truth PSF φtrue,synth. being a 
Gaussian with a spatial standard deviation σx = 0.8 pix and spectral σs =

0.11 nm = 2 pix. We selected σx and σs such that convolving φtrue,synth. 
with the PSF of the monochromator φsource yields a PSF being in the peak 
region very similar to the measured φmean (cmp. the corresponding PSFs 
in Figs. 3 and 4). 

2.5.1. Synthetic calibration data 
We synthetically generated PSF calibration data by generating φtrue, 

synth. convolved by φsource at the same 30 spatial-spectral positions, 
where the real calibration data has been measured (cmp. Section 2.4.1). 
The data is scaled to the same maximum value as the real calibration 
data and the same ’dark’ background value. Finally Poisson noise as in 
the real calibration data has been added. 

2.5.2. Synthetic point spread functions 
Synthetic PSFs φmean,synth., φmean,Lucy,synth., φmedian,synth., and φmedian, 

Lucy,synth. (see Fig. 4) are derived following Sections 2.4.2 and 2.4.3, i.e. 
running the same script, but using the synthetic calibration data from 
Section 2.5.1 instead of real calibration data. 

In the experiments below (Section 3.1), we compare the performance 
of all four synthetic PSFs. In addition, we test a well-known way of 
sharpening a PSF by squaring it (φ2

mean,synth.) as proposed by Deneve et al. 
(1999). 

2.5.3. Synthetic spatio-spectral images of plants and soil 
The deconvolution task addressed here significantly differs from 

common tasks like e.g. camera shake removal (Levin et al., 2009). Im-
ages are taken under heavily controlled conditions where the blurring is 
due to a very sharp PSF stemming from a high-end scientific optical 
system. Further the FLUO module is designed to take spectral images of 
plants near the O2 absorption bands. Inspecting typical vegetation 
spectra (cmp. Figs. 2 and 5), we notice major differences to usual image 
data used to evaluate computer vision algorithms like photographs of 
objects (e.g. the ImageNet dataset, Deng et al. (2009)) or city scenes 
(Cityscapes dataset, Cordts et al. (2016)):  

• The mean spectral response of plants, i.e. at sensor radiance, in the 
range between 670 nm and 780 nm observable by the FLUO module 
typically starts at values below 2 W/(m2 sr μm) at 687 nm and in-
creases to over 100 or even 150 W/(m2 sr μm) at 780 nm, i.e. the 
signal mean roughly increases about one and a half orders of 
magnitude.  

• Vegetation fluorescence is in the range of 1 to 2 W/(m2 sr μm) at 
around 760 nm with a width at half height of approx. 50 nm.  

• The signal part interesting for fluorescence retrieval is therefore in 
the absorption bands producing sharp valleys in the signal. These 
parts of the signal need to be reconstructed with high accuracy to 
allow for as accurate as possible SIF retrieval, as we will investigate 
in our experiments below (see Section 3.3. 

Well established test images from computer vision are therefore not 
suitable here. In order to get as close as possible to our application 
scenario, we synthetically compose spatial spectral images Itrue(λ, x, t) 
which we can use as ground truth data. To this end we take the real 
1024×384×301 data Ireal described in Section 2.2, and exchange the 
real measured spectra by simulated ones. To be more precise, at each 2d 
spatial position (x, t) in Ireal(λ, x, t), we calculate the mean intensity over 

Fig. 3. PSFs from real calibration data: Mean and median aggregated PSFs and their sharpened versions φmean, φmean,Lucy, φmedian, and φmedian,Lucy. The center 43×43 
pixels are shown, where the horizontal axis is spectral and the vertical axis spatial. Please note the logarithmic scaling (base 10) of the color-coded unit free PSF 
values, normalized to sum up to 1. 
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the whole spectrum Ireal(x, t) =
∑

λIreal(λ, x, t)/1024. The spectral com-
ponents Is(λ), s ∈ {1,. . . , 6}, of six different targets are from physical 
spectra simulations. Radiative transfer through plant canopy has been 
simulated using SCOPE (version v1.73, (Tol et al., 2009)) and atmo-
sphere radiative transfer was simulated using MODTRAN5 (Berk et al., 
2004). SCOPE and MODTRAN are well-established tools designed for 
spectrally resolved radiative transfer simulation. Please find their 
parameterization used in this study in the supplemental material (Sec-
tion Appendix A.1). Radiance spectra bottom of atmosphere of four 
different vegetation parameterizations, i.e. vegetation with low or high 
chlorophyll content and low or high Leaf Area Index (LAI), and two soil 
types were simulated containing specific fluorescence signals (Fig. 5, 
right, top and bottom). The spectra have mean intensities Is. To 
distribute Is(λ) for vegetation and soil as in the real data, we find vege-
tation at positions (x, t) according to the ’Ratio Vegetation Index’ 
(NIR/Red) (see e.g. Jordan, 1969), i.e. where Ireal(757.8 nm, x, t)/Ire-

al(678.68 nm, x, t) > 1.45. In the synthetic data, we use simulated soil 
spectra for non-vegetation, and vegetation spectra for vegetation. We 

define a distribution pattern, where at each x the vegetation or soil is 
constant for the whole flight time, i.e. for all t. This yields a striped index 
pattern s(x, t), cmp. Fig. 5, top left. The synthetic data Itrue(λ, x, t) is then 
given by Itrue(λ,x, t) = Ireal(x, t)Is(x,t)(λ)/Is(x,t). 

As input data for our synthetic deconvolution experiments we need 
suitably corrupted data Icorr(λ, x, t). We derive it by convolving Itrue by 
the ground truth PSF φtrue,synth. and adding shot noise from the noise 
distribution known from radiometric calibration (cmp. Section 2.3). 

2.6. Retrieval of sun induced fluorescence 

As our finally desired signal is the sun induced fluorescence (SIF) 
from O2A and O2B bands, we apply a specialized SIF retrieval method, i. 
e. the improved Fraunhofer Line Discrimination Method (iFLD, origi-
nally developed by Alonso et al. (2008) and refined by Damm et al. 
(2014)). The main idea behind this algorithm is that at wavelength λ 
radiance L(λ) coming from a target with reflectance R(λ) depends on the 
incoming irradiance I(λ) and fluorescence f(λ) via L(λ) = R(λ)I(λ) + f(λ). 

Fig. 4. PSFs from synthetic calibration data: Ground truth, mean and median aggregated PSFs and their sharpened versions φtrue,synth., φmean,synth., φmean,Lucy,synth., 
φmedian,synth., and φmedian,Lucy,synth.. The center 43×43 pixels are shown, where the horizontal axis is spectral and the vertical axis spatial. Please note the logarithmic 
scaling (base 10) of the color-coded unit free PSF values, normalized to sum up to 1. 

Fig. 5. Spatial-spectral synthetic images. Top: Six synthetic spectra Is(λ) (right) and index image s(x, t), i.e. where they are to find in the synthetic data (left, line 
colors and colors of the index image coincide). Bottom left: Synthetic spatio-spectral data Itrue mimicking Ireal by construction. It is shown in the same pseudo colors as 
Ireal in Fig. 2, left. Bottom right: synthetic fluorescence signal contained in the simulated spectra Is(λ). 
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The standard FLD method assumes that for two wavelengths λ1 and λ2 
being close enough reflectance R and fluorescence f can be assumed to 
be constant, R : = R(λ1) = R(λ2) and f : = f(λ1) = f(λ2) for λ1 ≈ λ2. Thus 
when irradiances I(λ1) and I(λ2), and radiances L(λ1) and L(λ2) are 
known, one can solve for f and R. Measurement noise has least influence 
on the estimation of f, when λ1 and λ2 lie inside and outside of an ab-
sorption band, respectively. 

The iFLD method relaxes the FLD’s constancy assumptions for R and f 
by setting R(λ1) = αRR(λ2) and f(λ1) = αFf(λ2). For plants the two pa-
rameters αR and αF can e.g. be derived from functional simulations on 
reflectance and fluorescence mechanisms i.e. we use the expected value 
of R(λ1)/R(λ2) and f(λ1)/f(λ2) in the O2A and O2B bands. 

2.7. Error measures 

We evaluate errors using bias, Root Mean Squared Error (RMSE), and 
the Peak Signal to Noise Ratio (PSNR). Bias is the non-squared mean 
error. For comparing two discrete image signals, I0 being the ground 
truth and I1 the estimated signal, with N sampling points or pixels it 
reads 

bias =
1
N
∑N

i=1
(I1 − I0) (9)  

Negative bias means the signal is on average underestimated, positive 
overestimated. It should not be confused with RMSE, i.e. 

RMSE =
1
N

(
∑N

i=1
(I1 − I0)

2

)
1
2 (10)  

being always non-negative. PSNR is proportional to the logarithm of the 
inverse RMSE, i.e. 

PSNR = 20log
(

Imax

RMSE

)

(11)  

where Imax is the maximum radiance value observed in our data, see e.g. 
Thu and Ghanbari (2008)). 

3. Experiments 

We first perform experiments on synthetic data in order to quanti-
tatively investigate the different PSF and deconvolution method com-
binations. We observe different effects which can be explained 
consistently from theory. Then we apply the same combinations to real 
spatio-spectral data to see, whether or not the same effects appear. 

3.1. Deconvolution of synthetic spatio-spectral data 

On this data, in a training step, we derived optimal iteration numbers 
for the vanCittert, Lucy-Richardson, and blind deconvolution algo-
rithms. We evaluate errors using PSNR, see Section 2.7, Eq. (11). We 
found that 3 iterations yield highest PSNR values for vanCittert’s 
method, independent of which PSF is used. For Lucy-Richardson and 
blind deconvolution about 7 iterations are best for the non-sharpened 
PSFs φmean,synth. and φmedian,synth., and 12 iterations for the sharper 
ones φtrue,synth., φmean,Lucy,synth. and φmedian,Lucy,synth.. As blind deconvo-
lution yielded always very similar results as Lucy-Richardson (PSNR 
difference about 0.1%), we omit results on blind deconvolution in the 
following. The tested blind deconvolution is Lucy-Richardson decon-
volution with an additional update step on the PSF (see Section 2.1, Eq. 
(5)). We conclude that this step has no relevant effect when operating on 
our already very peaked PSFs. 

3.1.1. Quantitative results in terms of PSNR 
We computed deconvolution results using the six different remaining 

algorithms, namely 1 or 3 iterations of vanCittert’s algorithm, regular-
ized deconvolution, Wiener filtering, and 7 or 12 iterations of Lucy- 
Richardson algorithm. We ran each algorithm with each of the six 
different PSFs derived above, namely φtrue,synth., φmean,synth., φmean,Lucy, 

synth., φmedian,synth., φmedian,Lucy,synth., and φ2
mean,synth.. Results are depicted 

in Fig. 6, where we show PSNRs for all of these combinations as bar 
plots. Fig. 6A shows PSNRs for the full signal, B and C for the O2A band 
and O2B band, respectively. 

For the baseline, 1 iteration of vanCittert’s algorithm (see Siegmann 
et al. (2019)), we observe in Fig. 6A, that the exact shape of the PSF has 
only minor influence on the result, when being interested in the full 
spectrum where values vary between PSNR 36.4 and 36.7 with standard 
deviations of 1.7 . Please refer to Table A.3 for mean and standard de-
viations of PSNR values. In Fig. 6B the same behavior can be seen for the 
O2A band where PSNR also varies non-significantly between 29.9 and 
30.8 with standard deviation of 2.2. For the O2B band in Fig. 6C using 
sharpened PSFs is crucial, as the unsharpened ones φmean,synth. and 
φmedian,synth. even slightly deteriorate the signal. 

In Fig. 6A, for all the other algorithms we observe, that, non- 
surprisingly, using the true PSF φtrue,synth. works best. PSNR values are 
34.9 for the unchanged signal, 36.7 when applying vanCittert1, 38.3 for 
vanCittert3, 38.8 for deconvreg, 40.27 for deconvwnr, and 38.0 and 
38.6 for LucyRichards7 and LucyRichards12, respectively. The decon-
volved PSFs φmean,synth.,Lucy and φmedian,synth.,Lucy yield no significant 
differences to the true PSF, and φ2

mean,synth. is only a little worse, such that 
in the barplot differences are hard see and clearly much smaller than the 
standard deviations. Using the non-sharpened PSFs φmean,synth. and 
φmedian,synth. systematically does not reach the improvements achieved 
by the other PSFs. This behavior is stronger, for algorithms with less 
regularization in high-frequent signal parts. 

Three iterations of vanCittert’s algorithm yield stable improvements 
almost independent of the PSF used. Deconvreg and the two versions of 
Lucy-Richardson show simular behavior, where deconvolved PSFs 
slightly outperform the others including φ2

mean,synth.. Wiener filtering 
should only be used with suitably sharpened PSFs where PSNR is up to 
40.2, as performance drops strongly when using too smooth PSFs φmean, 

synth. (PSNR 34.5) and φmedian,synth. (PSNR 36.0), and only slightly im-
proves using the squared φ2

mean,synth. (PSNR 39.0). However, when using 
suitable PSFs, Wiener filtering yields highest signal improvements of all 
tested algorithms. 

For the O2A band in Fig. 6B we observe a similar behavior as for the 
full spectrum in Fig. 6A. For regions with low signal strength as the O2B 
band, results shown in Fig. 6C, using a suitable PSF is crucial. If doing so, 
all algorithms yield signal improvements, and using Deconvreg or 
Wiener filtering yield similar best performance. 

Overall, comparing the algorithms in cases where the signal is 
improved, Wiener filtering outperforms the other approaches in terms of 
PSNR, but also deteriorates the signal most, when PSFs are too smooth. 
For the O2B band, the only way to achieve an improvement using the 
proposed methods is using a suitably sharp PSF as using φmean,synth. and 
φmedian,synth. always deteriorates the signal. When only interested in the 
O2A band, applying 3 iterations of vanCittert’s algorithm robustly yields 
good deconvolution perfomance, also with too smooth PSFs like φmean, 

synth. and φmedian,synth.. Results are on a par with Lucy-Richardson with 
12 iterations and regularized deconvolution for the sharpened PSFs and 
always better than 1 iteration of vanCittert’s algorithm. 

Comparing overall performance of the different PSFs, we observe 
that if significant differences are present for an algorithm, sharpened 
PSFs φmean,Lucy,synth., φmedian,Lucy,synth., and φ2

mean,synth. perform better than 
non-sharpened φmean,synth. and φmedian,synth.. The performance of squared 
φ2

mean,synth. in the full spectrum or O2A band either belongs to the worst 
group (vanCittert and deconvreg algorithms), or lies between decon-
volved and unsharpened PSFs (Wiener filter and Lucy-Richardson al-
gorithms). In the O2B band its performance shows no significant 
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difference to deconvolved or the true PSF. Overall it does not stick out 
positively or negatively. The deconvolved PSFs φmean,Lucy,synth. and 
φmedian,Lucy,synth. consistently yield no significant difference to using the 
ground truth PSF φtrue,synth.. 

3.1.2. Qualitative results 
In order to get an impression of the deconvolution effect, we show in 

Fig. 7A–D a row, i.e. spectrum, from our synthetic data before cor-
rupting, i.e. the ground truth, after applying the PSF and noise, and the 
reconstructions derived using vanCittert, Lucy-Richardson, and Wiener 
filtering. 

We omit deconvolution results from regularized deconvolution for 
better overview. We observe, that for φmean,synth and φmedian,synth the 
reconstructed spectra do not match well with the initial data, as the 
overall amplitude is too high in high signal regions and too low in low 
signal parts. This effect comes from too wide spatial reach of these PSFs. 
The other two, sharpened PSFs φmean,Lucy,synth. and φmedian,Lucy,synth. yield 
very similar, plausible results that need further inspection for a detailed 
analysis. We therefore zoom in at the O2A band for the result using 
φmedian,Lucy,synth. and contrast them to the results using φmean,synth in 
Fig. 7E–J. In Fig. 7H and J we see that the different algorithms correct 
the corrupted signal differently strong. VanCittert with 1 iteration makes 
the least change, VanCittert with 3 iterations changes more and Lucy- 
Richardson and Wiener filtering even more. Using the too smooth 

φmedian,synth this leads to overcorrection for Lucy-Richardson and Wiener 
Filtering. VanCitter with 3 iterations comes close to the original signal. 
Using the sharper φmedian,Lucy,synth. Lucy-Richardson and Wiener 
Filtering come even closer to the desired original signal. 

For the less pronounced O2B band shown in Fig. 7K,L differences are 
more clearly visible. Using φmean,synth offsets the signal towards lower 
values due to the too smooth spatial component. In addition, especially 
well visible for Wiener filtering, high-frequent oscillations are amplified 
more than desired. Using φmedian,Lucy,synth. the overall offset is no longer 
visible and oscillations are less pronounced. 

We conclude, that the qualitative inspection is consistent with the 
quantitative observations: Lucy-Richardson and Wiener filtering 
perform well when a suitably sharp PSF is available, but overcorrect, 
when not. If unsure, it may be better to use vanCittert’s algorithm with 3 
iterations, performing reliably well, even if not reaching the perfor-
mance of the other two algorithms in good cases. 

3.2. Deconvolution experiments on real data 

For real data no ground truth is available. However, for the spectral 
components some physics-based features can be observed in order to 
judge reconstruction quality: 

Fig. 6. Mean PSNR values (unit free) and their standard deviations for different deconvolution algorithms and using different PSFs. Larger values indicate better 
signal quality. ’Unchanged’ describes PSNR of the initial data. Please compare Table A.3. 
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• Ringing: For absorption bands it is clear, that they are steep drops in 
an otherwise mainly smooth spectrum. Thus the upper borders of 
bands in a reconstructed spectrum should not show strong over-
shoots. Such overshoots stem from over-amplification of signal or 
noise, indicating either that the noise level has been estimated too 
low, or the PSF used for deconvolution is smoother than the true PSF 

and thus the signal is over-corrected. However, as our data contains 
some noise, for an optimal reconstruction we expect ringing artifacts 
in the same range as the noise amplitude. For example, see the 
overshoots of LucyRichards 12 in Fig. 7A,B in the O2A band from 
765 nm to 767 nm or of Wiener filtering and LucyRichards 12 in 
Fig. 8A–C. 

Fig. 7. Deconvolution results for one spectral line from our synthetic dataset, spectral response in W/(m2 sr μm) versus wavelength in nm. A–D: Full spectra for four 
different PSFs. E–J: O2A band and details of it, left for φmean,synth, right for φmedian,Lucy,synth.. K,L: O2B band, left for φmean,synth, right for φmedian,Lucy,synth.. Legend in A 
is valid for plots A–J. Legend in K is valid for plots K and L. 
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• Positivity: Spectra need to be positive everywhere, especially in the 
deepest valleys of absorption bands, as the noise level in our data is 
small. For example, see the undershoots of Wiener filtering in 
Fig. 8A,B and E in the O2A band from 762.5 nm to 765 nm.  

• Under-correction: Too little correction by a deconvolution scheme 
can be detected, by re-applying the PSF to the deconvolved image. 

Convolving a good deconvolution result with the PSF should yield a 
signal close to the initial raw data. Here ’close’ means in the same 
range as the noise level. If the re-convolved data is significantly 
smoother than the raw data, then the deconvolution scheme did not 
sharpen the signal enough. In such cases, sharp peaks and valleys are 
visibly reduced. 

Fig. 8. Deconvolution results for one spectral line from our real dataset, spectral response in W/(m2 sr μm) versus wavelength in nm. A–D: Full spectra for four 
different PSFs. E–J: O2A band and details of it, left for φmean, right for φmedian,Lucy. K,L: O2B band, left for φmean, right for φmedian,Lucy. Legend in A is valid for plots A, 
J. Legend in K is valid for plots K and L. 
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Thus the absence of strong ringing artifacts as well as positive signal 
values indicate good reconstruction quality. Absence of ringing indicates 
possible under-correction of PSF blurring. 

When we deconvolve our real test data using the Wiener filter 
together with the PSF φmean stemming from averaging PSF calibration 
measurements, we observe wild over and undershoots in the O2A band 
region (see Fig. 8A). This indicates, that this PSF is smoother than the 
actual PSF as concluded above. Same is true when using φmedian and less 
severely for φmean,Lucy. When we deconvolve with the sharpest PSF in 
this test, i.e. φmedian,Lucy, we observe that over- and undershoots are 
much smaller (see Fig. 8D). For a more detailed analysis, we again show 
zoom-ins on the O2A and O2B bands (Fig. 8E–L). For deconvolutions 
using φmean we see in Fig. 8E and H that strong over and undershoots are 
mainly present for Lucy-Richardson and Wiener filtering. Reconvolving 
this data with φmean (cmp. Fig. 9B) reveals that the vanCittert’s and also 
Lucy-Richardson’s algorithms undercorrect, even though Lucy- 
Richardson’s algorithm leads to strong oscillations. This is a clear sign, 
that φmean is smoother than it should be. Spectra are plausibly recon-
structed for φmedian,Lucy, in Fig. 8F, I and J with a similar behavior as in 
the synthetic data shown in Fig. 7. Lucy-Richardson and Wiener filtering 
show similar reconstructions as vanCittert 3 with φmean. In the O2B band, 
apart from the obvious too high oscillations for Wiener filtering using 
φmean, no clear differences are visible for the different methods. 

Overall we see a similar behavior as for the synthetic data, thus using 
sharpened PSFs and either vanCitters algorithm with 3 iterations or 
Lucy-Richardson or Wiener filtering seems to be beneficial. In order to 
test the different solutions capabilities for our target application, we 
investigate their performance when the deconvolved signal is used for 
fluorescence retrieval. 

3.3. Experiments with fluorescence retrieval from synthetic data 

In order to get insight in the effect of PSF deconvolution for our 
target application, i.e. retrieval of sun-induced fluorescence (SIF), we 
applied the iFLD algorithm described in Section 2.6 to the deconvolved 
synthetic data from the experiment shown in Section 3.1. O2A- and O2B 
bands were processed independently, where for O2A SIF at wavelength 
760 nm has been evaluated and for O2B at wavelength 687 nm, denoted 
SIF760 and SIF687, respectively. The known true synthetic SIF data for 
these wavelengths is shown in Fig. 10B and C. The mean value of SIF760 
is 0.526 W/(m2 sr μm) and of SIF687 it is 0.168 W/(m2 sr μm). 

In Fig. 10D and F we show the root mean squared error (RMSE) of 
SIF760 and SIF687 as barplots, where the error bars indicate the standard 
deviation of the squared error scaled appropriately to RMSE. Surpris-
ingly, higher PSNR of the spectral signal as shown in Fig. 6 does not 
always lead to more accurate SIF estimates and the other way round. 
Especially the clear signal improvements achieved using 1 iteration of 
vanCitterts algorithm (cmp. Fig. 6A) which are more or less independent 

from the selected PSF, lead to marginally better SIF760 estimates for the 
sharpened PSFs φmean,Lucy,synth. and φmedian,Lucy,synth., and even some-
what worse SIF760 estimates for the non-sharpened PSFs φmean,synth. and 
φmedian,synth.. The same is true for the two tested variants of Lucy- 
Richardson’s algorithm, where the positive effect of sharpening PSFs is 
stronger. For 3 iterations of vanCittert, regularized deconvolution, and 
Wiener filtering RMSE of SIF760 becomes lower with stronger correction. 
Unexpectedly, the drop in PSNR observed with Wiener filtering and the 
too smooth, unsharpened PSFs φmean,synth. and φmedian,synth. (cmp. 
Fig. 6A and B) does not lead to worse SIF760 estimates. When looking at 
the bias, i.e. the non-squared mean error, of the SIF760 estimates in 
Fig. 10E, we see that while all methods overestimate SIF760 systemati-
cally, overcorrection with Wiener filtering and too smooth PSFs leads to 
underestimation of SIF760. This behavior can also be observed in Fig. 11, 
top, when comparing the true SIF map with the two results of Wiener 
filtering. We conclude that signal degradation introduced by over-
correction via Wiener filtering does not catastrophically destroy SIF760, 
but only gently suppresses it. Smallest RMSE in the presented experi-
ments on SIF760 retrieval is 0.258 W/(m2 sr μm) achieved by Wiener 
filtering with φmedian,synth. and thus yields an average relative error of 
49%. This is a strong improvement wrt. previous methods applying one 
iteration of vanCittert’s algorithm with φmean,synth. yielding an RMSE of 
0.984 W/(m2 sr μm), or 187% relative error (see Fig. 11, top, for 
comparison). 

For SIF687 we observe a totally different behavior in Fig. 10F. 
Generally, all methods, including ’unchanged’, yield high RMSE mostly 
well above 200% relative error. In addition, standard deviations are 
often very high. 

Wiener filtering always degrades SIF687 estimates compared to un-
changed data, even though with decreased variance. This behavior 
cannot be explained by PSNR results. In Fig. 11 top right and bottom 
right, we see that Wiener filtering with sharpened PSFs produces 
increased SIF values at spatial edges, even in the zero SIF region in the 
lower left corner soil region. While these increased values do not add 
much to the error in SIF760, they have high influence on SIF687. 

All other methods improve SIF687 estimation on average, but not 
always with acceptably low standard deviations, indicating the low 
reliability of SIF687 estimates. What is more, there is no clear picture on 
which PSF performs reliably. φmean,Lucy,synth. performs overall best 
together with deconvreg (RMSE is 0.259 W/(m2 sr μm), i.e. 154% 
relative error), but gives very high standard deviation with 12 iterations 
of Lucy-Richardson and the highest observed error with Wiener filtering. 
φmedian,Lucy,synth. performs similarly well using deconvreg, but yields 
high variances with other methods, see also Fig. 11, bottom. When using 
the somewhat smoother PSFs φmean,synth. or φmedian,synth. RMSE can even 
be worse than with the unchanged signal when using deconvreg. No 
clear recommendation can be drawn from this experiment, as all 
deconvolution algorithms are highly sensitive on the exact fit of the 

Fig. 9. Results of re-convolution of deconvolved hyperspectral image data for the same line as shown in Fig. 8G – H, spectral response in W/(m2 sr μm) versus 
wavelength in nm. Legend in Fig. 8A is valid here, too. 
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applied PSF. 

4. Discussion and conclusion 

All observations on the PSNR of synthetic data, as well as the 
behavior of real data are consistent with our considerations of the PSF 
calibration measurements, where the monochromator and misalignment 
introduce additional blur in the PSF itself. A too smooth PSF tells a 
deconvolution algorithm, that the input data to correct had been more 
strongly smoothed than it really has been smoothed. Thus the algorithm 
over-corrects the data, leading to unwanted amplitude amplifications in 
mid- and high frequent (in terms of Fourier domain) signal components. 
This is visible as strong noise amplification and ringing, i.e. strong over 
and undershoots as visible e.g. in the Wiener filtering result in Fig. 8A–C 

in the O2A band from 765 nm to 767 nm. 
The reconstruction using Wiener filtering together with a sharpened 

PSF, φmean,Lucy or φmedian,Lucy, fulfills all quality criteria specified above, 
being consistent with our theoretical considerations and synthetic ex-
periments. However, for signal reconstruction it is not forgiving, if the 
estimated PSF is somewhat too smooth. Therefore, in cases where the 
PSF might be too smooth and cannot be corrected reliably, 3 iterations of 
vanCittert’s deconvolution is a better option, when reconstructing the 
hyperspectral signal is desired as final goal. 

Surprisingly, for estimation of SIF760 Wiener filtering is forgiving a 
too smooth PSF, just leading to some underestimation of SIF instead of 
the overestimation common for all other algorithms. From this obser-
vation we conclude, that the strong over- and undershoots visible in the 
Wiener filtered signal (cmp. Fig. 7A and Fig. 8A–C) are mainly due to 

Fig. 10. Estimation of sun-induced fluorescence. A: Spatial component (384×301 pix) of underlying real data Ireal in pseudo colors, where vegetation is green and 
soil gray. B and C: True values of SIF760 and SIF687 in synthetic data, respectively. D and F: Root mean squared error and standard deviation of estimated SIF760 and 
SIF687, respectively, for the different deconvolution methods and PSFs. E: Bias of estimated SIF760. 
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signal over-amplification and less due to too strongly amplified noise. 
Even though such an over-amplification of signal is strongly visible and 
indicates poor signal reconstruction, it seems to be of little effect to 
SIF760 retrieval using iFLD. The reduction of the smoothing effect of the 
PSF, however, seems crucial to SIF760 retrieval as can be concluded from 
Fig. 10E, where stronger correction (i.e. results for Wiener filtering with 
φmean,synth. and φmedian,synth. compared to φmean,Lucy,synth. and φmedian,Lucy, 

synth.) lead to lower mean SIF760 values. 
For the estimation of SIF687 we did not find a well-performing 

configuration where we can give a reliable recommendation. We spec-
ulate that the unstable behavior could be due to the coupling of the high 
signal O2A band and low signal O2B band in the PSNR-optimized 
deconvolution methods leading to relatively high errors in low signal 
regions. Coupling can be due to parameter settings (e.g. number of it-
erations, mean noise level, averaging of the PSF) or due to the appli-
cation of Fourier transform in Wiener filtering, deconvreg and the Lucy- 
Richardson method. Coupling signal part of different amplitudes can 
have this unwanted effect, as absolute errors are small for low signals 
and large for large signals. Balancing the errors by applying a correction 
to both signal parts jointly, may then lead to a relatively large error in low 
signal parts. Further experiments would be needed to test this hypoth-
esis and suggest an approach suitable for SIF687 retrieval. 

For SIF estimation we therefore propose to use the O2A band and 
classic Wiener filtering for deconvolution of FLUO data, combined with 
edge-tapering as border handling, our automated noise estimation in 
Fourier domain, and the novel mean- or median-aggregated and 

sharpened PSFs φmedian,Lucy or φmean,Lucy. Which combination performs 
best depends on how close the available PSF is to the real one. For 
qualitative checks we propose to use the features described in Section 
3.2 i.e. low ringing or overshoots, positivity, and closeness to the orig-
inally measured signal when re-convolving the deconvolved signal by 
the PSF. 

We conclude that applying sharpening to a measured PSF is benefi-
cial, when additional smoothing was introduced in the calibration 
measurements. Then such PSF sharpening allows to apply well-known 
strong deconvolution algorithms removing, or at least strongly 
reducing, blurring in spatio-spectral images introduced by the sensor’s 
optics. This not only improves the spatio-spectral information itself, but 
can also have positive effects in terms of reduced uncertainty on sub-
sequently derived quantities like SIF. 

The main pitfalls of the selected method are that the initially 
measured PSF can be sharpened too little or too much. In the first case 
using a strong deconvolution algorithm like Wiener filtering may 
negatively affect signal quality, such that not applying any deconvolu-
tion may even be better (cmp. Fig. 6). However, this negative effect did 
not carry over to SIF760 estimates using iFLD, where using Wiener 
filtering always resulted in improvements compared to the baseline from 
Siegmann et al. (2019) (cmp. Fig. 10 D, E). Potential signal over- or 
undercorrections that might be introduced by our method are limited by 
two worst cases of (i) not sharpening the PSF, i.e. applying φmean, and (ii) 
sharpening the PSF to a delta peak resulting in no effect of the decon-
volution, i.e. the case unchanged in our experiments. We therefore 

Fig. 11. Sun induced fluorescence maps. True SIF and results of three selected deconvolution algorithm - PSF combinations. Top: SIF760 maps scaled from -1 to 4 W/ 
(m2 sr μm). Bottom: SIF687 maps scaled from -0.5 to 1.5 W/(m2 sr μm). 
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conclude that process uncertainty due to potential signal under- or 
overcorrections is well controllable, and that the high benefit of 
reducing the mean squared error of SIF by a factor 3.8 outweighs this 
risk. 

The iFLD method uses only two spectral lines in order to estimate SIF. 
For SIF retrieval methods using more information from the spectra, like 
e.g. the Spectral Fitting Method (Cogliati et al., 2019) using all the 
contiguous wavelengths over the spectral window from 680 nm to 
780 nm, deteriorating the signal may carry over to SIF estimation. Same 
may be true when other target signals are of interest. However, we 
expect that when the PSF is sharpened adequately and the quality fea-
tures from Section 3.2 (no over- or undershoots, reconvolved signal close 
to original) hold after applying deconvolution, that the improved signal 
quality carries over to most other subsequent measures derived from the 
signal. Clearly, to be certain, this needs to be tested for every derived 
quantity one may be interested in. 

From this study, further desirable investigations become clear, which 
may be interesting for future research. The first is an adaptation of blind 
deconvolution to the scenario of highly peaked PSFs stemming from 
high-quality instruments. The tested blind deconvolution algorithm 
(MathWorks Inc., 2021) unfortunately had no update effect on the PSF, 
presumably because the PSF quality was high from the beginning. The 
second could be to look into deconvolution methods based on local 
Fourier transforms or wavelet-based reconstructions, which have been 
successfully used in other application scenarios. They would be benefi-
cial in order to decouple the high signal O2A band region from the low 
signal in the O2B region. These regions additionally show clear differ-
ences in mean SNR, and somewhat different PSFs in the real calibration 
data, which should be appropriately considered in future research. 
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