000897482 001__ 897482
000897482 005__ 20240712113154.0
000897482 0247_ $$2doi$$a10.1088/1361-648X/ac1aa2
000897482 0247_ $$2ISSN$$a0953-8984
000897482 0247_ $$2ISSN$$a1361-648X
000897482 0247_ $$2Handle$$a2128/28752
000897482 0247_ $$2altmetric$$aaltmetric:112433407
000897482 0247_ $$2pmid$$apmid:34348250
000897482 0247_ $$2WOS$$aWOS:000687397300001
000897482 037__ $$aFZJ-2021-03815
000897482 082__ $$a530
000897482 1001_ $$0P:(DE-Juel1)164857$$aTesch, Rebekka$$b0$$eCorresponding author
000897482 245__ $$aProperties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT–solvation approach
000897482 260__ $$aBristol$$bIOP Publ.$$c2021
000897482 3367_ $$2DRIVER$$aarticle
000897482 3367_ $$2DataCite$$aOutput Types/Journal article
000897482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633939378_26899
000897482 3367_ $$2BibTeX$$aARTICLE
000897482 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897482 3367_ $$00$$2EndNote$$aJournal Article
000897482 520__ $$aSelf-consistent modeling of the interface between solid metal electrode and liquid electrolyte is a crucial challenge in computational electrochemistry. In this contribution, we adopt the effective screening medium reference interaction site method (ESM–RISM) to study the charged interface between a Pt(111) surface that is partially covered with chemisorbed oxygen and an aqueous acidic electrolyte. This method proves to be well suited to describe the chemisorption and charging state of the interface at controlled electrode potential. We present an in-depth assessment of the ESM–RISM parameterization and of the importance of computing near-surface water molecules explicitly at the quantum mechanical level. We found that ESM–RISM is able to reproduce some key interface properties, including the peculiar, non-monotonic charging relation of the Pt(111)/electrolyte interface. The comparison with independent theoretical models and explicit simulations of the interface reveals strengths and limitations of ESM–RISM for modeling electrochemical interfaces.
000897482 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000897482 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897482 7001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr M$$b1
000897482 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael H$$b2
000897482 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ac1aa2$$gVol. 33, no. 44, p. 444004 -$$n44$$p444004 -$$tJournal of physics / Condensed matter$$v33$$x1361-648X$$y2021
000897482 8564_ $$uhttps://juser.fz-juelich.de/record/897482/files/Properties%20of%20the%20Pt_Tesch.pdf$$yOpenAccess
000897482 8564_ $$uhttps://juser.fz-juelich.de/record/897482/files/Tesch_2021_J._Phys.%20_Condens._Matter_33_444004.pdf$$yOpenAccess
000897482 8767_ $$d2021-12-30$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP
000897482 909CO $$ooai:juser.fz-juelich.de:897482$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000897482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164857$$aForschungszentrum Jülich$$b0$$kFZJ
000897482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b1$$kFZJ
000897482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b2$$kFZJ
000897482 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000897482 9141_ $$y2021
000897482 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000897482 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000897482 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000897482 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897482 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2019$$d2021-02-03
000897482 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000897482 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000897482 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000897482 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897482 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000897482 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-03$$wger
000897482 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000897482 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000897482 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000897482 920__ $$lyes
000897482 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000897482 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000897482 9801_ $$aFullTexts
000897482 980__ $$ajournal
000897482 980__ $$aVDB
000897482 980__ $$aUNRESTRICTED
000897482 980__ $$aI:(DE-Juel1)IEK-13-20190226
000897482 980__ $$aI:(DE-82)080011_20140620
000897482 980__ $$aAPC
000897482 981__ $$aI:(DE-Juel1)IET-3-20190226