000897485 001__ 897485
000897485 005__ 20240709082049.0
000897485 0247_ $$2doi$$a10.1016/j.electacta.2021.139253
000897485 0247_ $$2ISSN$$a0013-4686
000897485 0247_ $$2ISSN$$a1873-3859
000897485 0247_ $$2Handle$$a2128/29549
000897485 0247_ $$2altmetric$$aaltmetric:114205929
000897485 0247_ $$2WOS$$aWOS:000711189500010
000897485 037__ $$aFZJ-2021-03818
000897485 082__ $$a540
000897485 1001_ $$0P:(DE-Juel1)181059$$aEslamibidgoli, Mohammad J.$$b0$$ufzj
000897485 245__ $$aDeprotonation and Cation Adsorption on the NiOOH/Water Interface: A Grand-Canonical First-Principles Investigation
000897485 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000897485 3367_ $$2DRIVER$$aarticle
000897485 3367_ $$2DataCite$$aOutput Types/Journal article
000897485 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640067355_5038
000897485 3367_ $$2BibTeX$$aARTICLE
000897485 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897485 3367_ $$00$$2EndNote$$aJournal Article
000897485 520__ $$aNickel-based oxides are highly active, cost-effective materials for the oxygen evolution reaction in alkaline conditions. Recent experimental studies have revealed the importance of surface deprotonation and alkali metal cation adsorption on the activity of Ni oxide surfaces, in contact with aqueous alkaline electrolyte. As a first step to elucidate the role of the alkali adsorption for the activity, we performed first-principles electronic structure calculations to address the stable surface structures of -NiOOH(0001) as a function of the operating conditions in an electrochemical environment. We present a grand-canonical approach to compute the surface Pourbaix diagram of the -NiOOH/water interface for the processes of deprotonation and alkali metal cation adsorption. The results of this study emphasize the importance of double-layer effects, including the adsorbate-induced change of surface dipole moments and the rearrangement of water molecules due to their strong interaction with the adsorbed species, for the most stable interface structure.
000897485 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000897485 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897485 7001_ $$0P:(DE-Juel1)185067$$aHuang, Jun$$b1
000897485 7001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr M.$$b2
000897485 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael H.$$b3$$ufzj
000897485 7001_ $$00000-0003-4037-7331$$aGroß, Axel$$b4$$eCorresponding author
000897485 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2021.139253$$gp. 139253 -$$p139253 -$$tElectrochimica acta$$v398$$x0013-4686$$y2021
000897485 8564_ $$uhttps://juser.fz-juelich.de/record/897485/files/Deprotonation%20and%20Cation%20Adsorption%20on%20the%20NiOOH-Water%20Interface.pdf$$yPublished on 2021-09-21. Available in OpenAccess from 2023-09-21.
000897485 909CO $$ooai:juser.fz-juelich.de:897485$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000897485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181059$$aForschungszentrum Jülich$$b0$$kFZJ
000897485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b2$$kFZJ
000897485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b3$$kFZJ
000897485 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000897485 9141_ $$y2021
000897485 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000897485 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000897485 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000897485 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2019$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2019$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000897485 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000897485 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000897485 920__ $$lyes
000897485 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000897485 9801_ $$aFullTexts
000897485 980__ $$ajournal
000897485 980__ $$aVDB
000897485 980__ $$aUNRESTRICTED
000897485 980__ $$aI:(DE-Juel1)IEK-13-20190226
000897485 981__ $$aI:(DE-Juel1)IET-3-20190226