000897486 001__ 897486
000897486 005__ 20240712113149.0
000897486 0247_ $$2doi$$a10.1039/D1RA05324H
000897486 0247_ $$2Handle$$a2128/28761
000897486 0247_ $$2altmetric$$aaltmetric:114178912
000897486 0247_ $$2WOS$$aWOS:000716076100001
000897486 037__ $$aFZJ-2021-03819
000897486 082__ $$a540
000897486 1001_ $$0P:(DE-Juel1)181059$$aEslamibidgoli, Mohammad Javad$$b0$$eCorresponding author
000897486 245__ $$aConvolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells
000897486 260__ $$aLondon$$bRSC Publishing$$c2021
000897486 3367_ $$2DRIVER$$aarticle
000897486 3367_ $$2DataCite$$aOutput Types/Journal article
000897486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676461551_10242
000897486 3367_ $$2BibTeX$$aARTICLE
000897486 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897486 3367_ $$00$$2EndNote$$aJournal Article
000897486 520__ $$aThe performance of polymer electrolyte fuel cells decisively depends on the structure and processes in membrane electrode assemblies and their components, particularly the catalyst layers. The structural building blocks of catalyst layers are formed during the processing and application of catalyst inks. Accelerating the structural characterization at the ink stage is thus crucial to expedite further advances in catalyst layer design and fabrication. In this context, deep learning algorithms based on deep convolutional neural networks (ConvNets) can automate the processing of the complex and multi-scale structural features of ink imaging data. This article presents the first application of ConvNets for the high throughput screening of transmission electron microscopy images at the ink stage. Results indicate the importance of model pre-training and data augmentation that works on multiple scales in training robust and accurate classification pipelines.
000897486 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000897486 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000897486 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897486 7001_ $$0P:(DE-Juel1)188822$$aTipp, Fabian$$b1
000897486 7001_ $$0P:(DE-Juel1)158080$$aJitsev, Jenia$$b2$$ufzj
000897486 7001_ $$aJankovic, Jasna$$b3
000897486 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael H.$$b4
000897486 7001_ $$0P:(DE-Juel1)181057$$aMalek, Kourosh$$b5
000897486 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/D1RA05324H$$gVol. 11, no. 51, p. 32126 - 32134$$n51$$p32126 - 32134$$tRSC Advances$$v11$$x2046-2069$$y2021
000897486 8564_ $$uhttps://juser.fz-juelich.de/record/897486/files/Sales%20Invoice_INV_014018.pdf$$yOpenAccess
000897486 8564_ $$uhttps://juser.fz-juelich.de/record/897486/files/d1ra05324h.pdf$$yOpenAccess
000897486 8767_ $$8INV_014018$$92021-09-28$$d2021-10-01$$eAPC$$jZahlung erfolgt$$z750 GBP Belegnr.: 1200171707
000897486 909CO $$ooai:juser.fz-juelich.de:897486$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000897486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181059$$aForschungszentrum Jülich$$b0$$kFZJ
000897486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188822$$aForschungszentrum Jülich$$b1$$kFZJ
000897486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158080$$aForschungszentrum Jülich$$b2$$kFZJ
000897486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b4$$kFZJ
000897486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181057$$aForschungszentrum Jülich$$b5$$kFZJ
000897486 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000897486 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000897486 9141_ $$y2021
000897486 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2019$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000897486 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000897486 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897486 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-05-04$$wger
000897486 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000897486 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000897486 920__ $$lyes
000897486 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000897486 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000897486 9801_ $$aAPC
000897486 9801_ $$aFullTexts
000897486 980__ $$ajournal
000897486 980__ $$aVDB
000897486 980__ $$aI:(DE-Juel1)IEK-13-20190226
000897486 980__ $$aI:(DE-Juel1)JSC-20090406
000897486 980__ $$aAPC
000897486 980__ $$aUNRESTRICTED
000897486 981__ $$aI:(DE-Juel1)IET-3-20190226