| Hauptseite > Workflowsammlungen > Publikationsgebühren > Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells > print |
| 001 | 897486 | ||
| 005 | 20240712113149.0 | ||
| 024 | 7 | _ | |a 10.1039/D1RA05324H |2 doi |
| 024 | 7 | _ | |a 2128/28761 |2 Handle |
| 024 | 7 | _ | |a altmetric:114178912 |2 altmetric |
| 024 | 7 | _ | |a WOS:000716076100001 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-03819 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Eslamibidgoli, Mohammad Javad |0 P:(DE-Juel1)181059 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells |
| 260 | _ | _ | |a London |c 2021 |b RSC Publishing |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1676461551_10242 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The performance of polymer electrolyte fuel cells decisively depends on the structure and processes in membrane electrode assemblies and their components, particularly the catalyst layers. The structural building blocks of catalyst layers are formed during the processing and application of catalyst inks. Accelerating the structural characterization at the ink stage is thus crucial to expedite further advances in catalyst layer design and fabrication. In this context, deep learning algorithms based on deep convolutional neural networks (ConvNets) can automate the processing of the complex and multi-scale structural features of ink imaging data. This article presents the first application of ConvNets for the high throughput screening of transmission electron microscopy images at the ink stage. Results indicate the importance of model pre-training and data augmentation that works on multiple scales in training robust and accurate classification pipelines. |
| 536 | _ | _ | |a 1231 - Electrochemistry for Hydrogen (POF4-123) |0 G:(DE-HGF)POF4-1231 |c POF4-123 |f POF IV |x 0 |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Tipp, Fabian |0 P:(DE-Juel1)188822 |b 1 |
| 700 | 1 | _ | |a Jitsev, Jenia |0 P:(DE-Juel1)158080 |b 2 |u fzj |
| 700 | 1 | _ | |a Jankovic, Jasna |b 3 |
| 700 | 1 | _ | |a Eikerling, Michael H. |0 P:(DE-Juel1)178034 |b 4 |
| 700 | 1 | _ | |a Malek, Kourosh |0 P:(DE-Juel1)181057 |b 5 |
| 773 | _ | _ | |a 10.1039/D1RA05324H |g Vol. 11, no. 51, p. 32126 - 32134 |0 PERI:(DE-600)2623224-8 |n 51 |p 32126 - 32134 |t RSC Advances |v 11 |y 2021 |x 2046-2069 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/897486/files/Sales%20Invoice_INV_014018.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/897486/files/d1ra05324h.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:897486 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)181059 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)188822 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)158080 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)178034 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)181057 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 1 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RSC ADV : 2019 |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0 |0 LIC:(DE-HGF)CCBYNC3 |2 HGFVOC |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-05-04 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-05-04 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-13-20190226 |k IEK-13 |l IEK-13 |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-13-20190226 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IET-3-20190226 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|