000901793 001__ 901793
000901793 005__ 20211020141239.0
000901793 0247_ $$2doi$$a10.2312/VCBM.20211340
000901793 037__ $$aFZJ-2021-03826
000901793 1001_ $$0P:(DE-Juel1)180323$$aRuzaeva, Karina$$b0
000901793 1112_ $$aEurographics Workshop on Visual Computing for Biology and Medicine$$cvirtual$$d2021-09-28 - 2021-10-01$$wGermany
000901793 245__ $$aPolar Space Based Shape Averaging for Star-shaped Biological Objects
000901793 260__ $$bThe Eurographics Association$$c2021
000901793 3367_ $$2DRIVER$$aconferenceObject
000901793 3367_ $$0PUB:(DE-HGF)26$$2PUB:(DE-HGF)$$aProceedings$$bproc$$mproc$$s1634651371_5090
000901793 3367_ $$2DataCite$$aOutput Types/Book
000901793 3367_ $$2ORCID$$aBOOK
000901793 3367_ $$03$$2EndNote$$aConference Proceedings
000901793 3367_ $$2BibTeX$$aPROCEEDINGS
000901793 520__ $$aIn this paper, we propose an averaging method for expert segmentation proposals of microbial organisms, resulting in a smooth, naturally looking segmentation ground truth. The approach exploits a geometrical property of the majority of the organisms - star-shapedness - and is based on contour averaging in polar space. It is robust and computationally efficient, where robustness is due to the absence of tuneable parameters. Moreover, the algorithm preserves the uncertainty (in terms of the standard deviation) of the experts' opinion, which allows to introduce an uncertainty-aware metric for estimation of the segmentation quality. This metric emphasizes the influence of ground truth regions with low variance. We study the performance of the proposed averaging method on time-lapse microscopy data of Corynebacterium glutamicum and the uncertainty-aware metric on synthetic data.
000901793 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000901793 588__ $$aDataset connected to DataCite
000901793 650_7 $$2Other$$a Applied computing
000901793 650_7 $$2Other$$a Imaging
000901793 650_7 $$2Other$$a Computing methodologies
000901793 650_7 $$2Other$$a Image processing
000901793 7001_ $$0P:(DE-Juel1)129051$$aNöh, Katharina$$b1$$eCorresponding author
000901793 7001_ $$0P:(DE-HGF)0$$aBerkels, Benjamin$$b2
000901793 773__ $$a10.2312/VCBM.20211340
000901793 909CO $$ooai:juser.fz-juelich.de:901793$$pVDB
000901793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180323$$aForschungszentrum Jülich$$b0$$kFZJ
000901793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129051$$aForschungszentrum Jülich$$b1$$kFZJ
000901793 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000901793 9141_ $$y2021
000901793 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000901793 980__ $$aproc
000901793 980__ $$aVDB
000901793 980__ $$aI:(DE-Juel1)IBG-1-20101118
000901793 980__ $$aUNRESTRICTED