000901807 001__ 901807
000901807 005__ 20220222143556.0
000901807 0247_ $$2doi$$a10.1103/PhysRevE.104.044404
000901807 0247_ $$2ISSN$$a2470-0045
000901807 0247_ $$2ISSN$$a2470-0061
000901807 0247_ $$2ISSN$$a1063-651X
000901807 0247_ $$2ISSN$$a1095-3787
000901807 0247_ $$2ISSN$$a1538-4519
000901807 0247_ $$2ISSN$$a1539-3755
000901807 0247_ $$2ISSN$$a1550-2376
000901807 0247_ $$2ISSN$$a2470-0053
000901807 0247_ $$2Handle$$a2128/28775
000901807 0247_ $$2pmid$$a34781557
000901807 0247_ $$2WOS$$aWOS:000706513200004
000901807 0247_ $$2altmetric$$aaltmetric:115656973
000901807 037__ $$aFZJ-2021-03831
000901807 082__ $$a530
000901807 1001_ $$0P:(DE-HGF)0$$aGrigoriev, S. V.$$b0$$eCorresponding author
000901807 245__ $$aObservation of nucleic acid and protein correlation in chromatin of HeLa nuclei using small-angle neutron scattering with D 2 O − H 2 O contrast variation
000901807 260__ $$aWoodbury, NY$$bInst.$$c2021
000901807 3367_ $$2DRIVER$$aarticle
000901807 3367_ $$2DataCite$$aOutput Types/Journal article
000901807 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645452221_27838
000901807 3367_ $$2BibTeX$$aARTICLE
000901807 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901807 3367_ $$00$$2EndNote$$aJournal Article
000901807 520__ $$aThe small-angle neutron scattering (SANS) on HeLa nuclei demonstrates the bifractal nature of the chromatin structural organization. The border line between two fractal structures is detected as a crossover point at Qc≈4×10−2nm−1 in the momentum transfer dependence Q−D. The use of contrast variation (D2O−H2O) in SANS measurements reveals clear similarity in the large scale structural organizations of nucleic acids (NA) and proteins. Both NA and protein structures have a mass fractal arrangement with the fractal dimension of D≈2.5 at scales smaller than 150 nm down to 20 nm. Both NA and proteins show a logarithmic fractal behavior with D≈3 at scales larger than 150 nm up to 6000 nm. The combined analysis of the SANS and atomic force microscopy data allows one to conclude that chromatin and its constitutes (DNA and proteins) are characterized as soft, densely packed, logarithmic fractals on the large scale and as rigid, loosely packed, mass fractals on the smaller scale. The comparison of the partial cross sections from NA and proteins with one from chromatin as a whole demonstrates spatial correlation of two chromatin's components in the range up to 900 nm. Thus chromatin in HeLa nuclei is built as the unified structure of the NA and proteins entwined through each other. Correlation between two components is lost upon scale increases toward 6000 nm. The structural features at the large scale, probably, provide nuclei with the flexibility and chromatin-free space to build supercorrelations on the distance of 103 nm resembling cycle cell activity, such as an appearance of nucleoli and a DNA replication.
000901807 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000901807 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000901807 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901807 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000901807 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000901807 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000901807 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x1
000901807 7001_ $$0P:(DE-HGF)0$$aIashina, E. G.$$b1
000901807 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b2
000901807 7001_ $$0P:(DE-Juel1)130893$$aPipich, V.$$b3
000901807 7001_ $$0P:(DE-Juel1)168105$$aLang, Ch.$$b4
000901807 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b5
000901807 7001_ $$00000-0002-5702-3209$$aBairamukov, V. Yu.$$b6
000901807 7001_ $$0P:(DE-HGF)0$$aFilatov, M. V.$$b7
000901807 7001_ $$0P:(DE-HGF)0$$aPantina, R. A.$$b8
000901807 7001_ $$0P:(DE-HGF)0$$aVarfolomeeva, E. Yu.$$b9
000901807 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.104.044404$$gVol. 104, no. 4, p. 044404$$n4$$p044404$$tPhysical review / E$$v104$$x2470-0053$$y2021
000901807 8564_ $$uhttps://juser.fz-juelich.de/record/901807/files/ED12121-accepted-manuscript.pdf$$yOpenAccess
000901807 8564_ $$uhttps://juser.fz-juelich.de/record/901807/files/PhysRevE.104.044404.pdf$$yOpenAccess
000901807 909CO $$ooai:juser.fz-juelich.de:901807$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$pdnbdelivery$$popenaire
000901807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b2$$kFZJ
000901807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b3$$kFZJ
000901807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168105$$aForschungszentrum Jülich$$b4$$kFZJ
000901807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b5$$kFZJ
000901807 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000901807 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000901807 9141_ $$y2021
000901807 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000901807 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000901807 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2019$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901807 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000901807 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000901807 920__ $$lyes
000901807 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000901807 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000901807 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000901807 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000901807 980__ $$ajournal
000901807 980__ $$aVDB
000901807 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000901807 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000901807 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000901807 980__ $$aI:(DE-588b)4597118-3
000901807 980__ $$aUNRESTRICTED
000901807 9801_ $$aFullTexts