000901808 001__ 901808
000901808 005__ 20240709074006.0
000901808 0247_ $$2doi$$a10.1029/2021GL094058
000901808 0247_ $$2ISSN$$a0094-8276
000901808 0247_ $$2ISSN$$a1944-8007
000901808 0247_ $$2Handle$$a2128/28841
000901808 0247_ $$2altmetric$$aaltmetric:113560329
000901808 0247_ $$2WOS$$aWOS:000706306000026
000901808 037__ $$aFZJ-2021-03832
000901808 082__ $$a550
000901808 1001_ $$0P:(DE-HGF)0$$aTilmes, S.$$b0$$eCorresponding author
000901808 245__ $$aSensitivity of Total Column Ozone to Stratospheric Sulfur Injection Strategies
000901808 260__ $$aHoboken, NJ$$bWiley$$c2021
000901808 3367_ $$2DRIVER$$aarticle
000901808 3367_ $$2DataCite$$aOutput Types/Journal article
000901808 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635161504_458
000901808 3367_ $$2BibTeX$$aARTICLE
000901808 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901808 3367_ $$00$$2EndNote$$aJournal Article
000901808 520__ $$aWe explore the impact of different stratospheric sulfur injection strategies to counter greenhouse gas induced warming on total column ozone (TCO), including high and low altitude injections at four latitudes, equatorial injections, and using a configuration with higher vertical resolution, based on a state-of-the-art Earth system model. The experiments maintain global surface temperatures at 2020 conditions, while following the unmitigated future scenario. Within the first 10 years of the injection, we find an abrupt deepening of the Antarctic ozone hole by 8%–20% and changes up to 5% for other regions and seasons. The ozone hole recovery is delayed by ∼25 to over 55 years, with the fastest recovery for low-altitude injections and slowest for equatorial injections. Mid to high-latitude TCO increases by 15% in Northern Hemisphere winter and spring between 2010–2019 and 2080–2089 due to both increasing greenhouse gases and increasing sulfur injections. Implications for ecosystems need to be investigated.
000901808 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000901808 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901808 7001_ $$00000-0001-7048-0781$$aRichter, J. H.$$b1
000901808 7001_ $$00000-0001-6318-1150$$aKravitz, B.$$b2
000901808 7001_ $$00000-0003-1987-9417$$aMacMartin, D. G.$$b3
000901808 7001_ $$0P:(DE-HGF)0$$aGlanville, A. S.$$b4
000901808 7001_ $$00000-0002-7342-2189$$aVisioni, D.$$b5
000901808 7001_ $$00000-0002-3418-0834$$aKinnison, D. E.$$b6
000901808 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b7
000901808 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2021GL094058$$gVol. 48, no. 19$$n19$$pe2021GL094058$$tGeophysical research letters$$v48$$x1944-8007$$y2021
000901808 8564_ $$uhttps://juser.fz-juelich.de/record/901808/files/2021GL094058.pdf$$yPublished on 2021-09-13. Available in OpenAccess from 2022-03-13.
000901808 8564_ $$uhttps://juser.fz-juelich.de/record/901808/files/postprint.pdf$$yPublished on 2021-09-13. Available in OpenAccess from 2022-03-13.
000901808 909CO $$ooai:juser.fz-juelich.de:901808$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000901808 9101_ $$0I:(DE-HGF)0$$60000-0002-3418-0834$$aExternal Institute$$b6$$kExtern
000901808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b7$$kFZJ
000901808 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000901808 9141_ $$y2021
000901808 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000901808 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2019$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000901808 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000901808 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000901808 920__ $$lyes
000901808 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000901808 9801_ $$aFullTexts
000901808 980__ $$ajournal
000901808 980__ $$aVDB
000901808 980__ $$aUNRESTRICTED
000901808 980__ $$aI:(DE-Juel1)IEK-7-20101013
000901808 981__ $$aI:(DE-Juel1)ICE-4-20101013