000901817 001__ 901817
000901817 005__ 20240712100841.0
000901817 0247_ $$2doi$$a10.5194/acp-21-13455-2021
000901817 0247_ $$2ISSN$$a1680-7316
000901817 0247_ $$2ISSN$$a1680-7324
000901817 0247_ $$2Handle$$a2128/28778
000901817 0247_ $$2altmetric$$aaltmetric:113208833
000901817 0247_ $$2WOS$$aWOS:000695647300002
000901817 037__ $$aFZJ-2021-03841
000901817 082__ $$a550
000901817 1001_ $$0P:(DE-HGF)0$$aWeigel, Ralf$$b0$$eCorresponding author
000901817 245__ $$aIn situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 2: NPF inside ice clouds
000901817 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000901817 3367_ $$2DRIVER$$aarticle
000901817 3367_ $$2DataCite$$aOutput Types/Journal article
000901817 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634132570_24100
000901817 3367_ $$2BibTeX$$aARTICLE
000901817 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901817 3367_ $$00$$2EndNote$$aJournal Article
000901817 520__ $$aFrom 27 July to 10 August 2017, the airborne StratoClim mission took place in Kathmandu, Nepal, where eight mission flights were conducted with the M-55 Geophysica up to altitudes of 20 km. New particle formation (NPF) was identified by the abundant presence of nucleation-mode aerosols, with particle diameters dp smaller than 15 nm, which were in-situ-detected by means of condensation nuclei (CN) counter techniques. NPF fields in clear skies as well as in the presence of cloud ice particles (dp > 3 µm) were encountered at upper troposphere–lowermost stratosphere (UTLS) levels and within the Asian monsoon anticyclone (AMA). NPF-generated nucleation-mode particles in elevated concentrations (Nnm) were frequently found together with cloud ice (in number concentrations Nice of up to 3 cm−3) at heights between ∼ 11 and 16 km. From a total measurement time of ∼ 22.5 h above 10 km altitude, in-cloud NPF was in sum detected over ∼ 1.3 h (∼ 50 % of all NPF records throughout StratoClim). Maximum Nnm of up to ∼ 11 000 cm−3 was detected coincidently with intermediate ice particle concentrations Nice of 0.05–0.1 cm−3 at comparatively moderate carbon monoxide (CO) contents of ∼ 90–100 nmol mol−1. Neither under clear-sky nor during in-cloud NPF do the highest Nnm concentrations correlate with the highest CO mixing ratios, suggesting that an elevated pollutant load is not a prerequisite for NPF. Under clear-air conditions, NPF with elevated Nnm (> 8000 cm−3) occurred slightly less often than within clouds. In the presence of cloud ice, NPF with Nnm between 1500–4000 cm−3 was observed about twice as often as under clear-air conditions. NPF was not found when ice water contents exceeded 1000 µmol mol−1 in very cold air (< 195 K) at tropopause levels. This indicates a reduction in NPF once deep convection is prevalent together with the presence of mainly liquid-origin ice particles. Within in situ cirrus near the cold point tropopause, recent NPF or intense events with mixing ration nnm larger than 5000 mg−1 were observed only in about 6 % of the in-cloud NPF data. In determining whether the cloud-internal NPF is attenuated or prevented by the microphysical properties of cloud elements, the integral radius (IR) of the ice cloud population turned out to be indicative. Neither the number of ice particles nor the free distance between the ice particles is clearly related to the NPF rate detected. While the increase in ice particles' mass per time (dmdt) is proportional to the IR and mainly due to the condensation of water vapour, additional condensation of NPF precursors proceeds at the expense of the NPF rate as the precursor's saturation ratio declines. Numerical simulations show the impact of the IR on the supersaturation of a condensable vapour, such as sulfuric acid, and furthermore illustrate that the IR of the cloud ice determines the effective limitation of NPF rates.
000901817 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000901817 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901817 7001_ $$0P:(DE-Juel1)184748$$aMahnke, Christoph$$b1
000901817 7001_ $$00000-0001-7307-7189$$aBaumgartner, Manuel$$b2
000901817 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b3
000901817 7001_ $$00000-0003-4008-4977$$aSpichtinger, Peter$$b4
000901817 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b5
000901817 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b6
000901817 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b7
000901817 7001_ $$00000-0003-2260-094X$$aViciani, Silvia$$b8
000901817 7001_ $$00000-0003-1349-6650$$aD'Amato, Francesco$$b9
000901817 7001_ $$00000-0002-3105-4306$$aTost, Holger$$b10
000901817 7001_ $$00000-0002-4774-9380$$aBorrmann, Stephan$$b11
000901817 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-13455-2021$$gVol. 21, no. 17, p. 13455 - 13481$$n17$$p13455 - 13481$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000901817 8564_ $$uhttps://juser.fz-juelich.de/record/901817/files/acp-21-13455-2021.pdf$$yOpenAccess
000901817 909CO $$ooai:juser.fz-juelich.de:901817$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000901817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184748$$aForschungszentrum Jülich$$b1$$kFZJ
000901817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b3$$kFZJ
000901817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b5$$kFZJ
000901817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b6$$kFZJ
000901817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b7$$kFZJ
000901817 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000901817 9141_ $$y2021
000901817 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000901817 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000901817 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901817 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000901817 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000901817 920__ $$lyes
000901817 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000901817 9801_ $$aFullTexts
000901817 980__ $$ajournal
000901817 980__ $$aVDB
000901817 980__ $$aUNRESTRICTED
000901817 980__ $$aI:(DE-Juel1)IEK-7-20101013
000901817 981__ $$aI:(DE-Juel1)ICE-4-20101013