000901822 001__ 901822
000901822 005__ 20240712100841.0
000901822 0247_ $$2doi$$a10.5194/acp-21-14403-2021
000901822 0247_ $$2ISSN$$a1680-7316
000901822 0247_ $$2ISSN$$a1680-7324
000901822 0247_ $$2Handle$$a2128/28781
000901822 0247_ $$2altmetric$$aaltmetric:114163277
000901822 0247_ $$2WOS$$aWOS:000703046400001
000901822 037__ $$aFZJ-2021-03845
000901822 082__ $$a550
000901822 1001_ $$0P:(DE-Juel1)186876$$aSchneider, Julia$$b0$$eCorresponding author
000901822 245__ $$aHigh homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures
000901822 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000901822 3367_ $$2DRIVER$$aarticle
000901822 3367_ $$2DataCite$$aOutput Types/Journal article
000901822 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634136295_21190
000901822 3367_ $$2BibTeX$$aARTICLE
000901822 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901822 3367_ $$00$$2EndNote$$aJournal Article
000901822 520__ $$aHomogeneous freezing of aqueous solution aerosol particles is an important process for cloud ice formation in the upper troposphere. There the air temperature is low, the ice supersaturation can be high and the concentration of ice-nucleating particles is too low to initiate and dominate cirrus cloud formation by heterogeneous ice nucleation processes. The most common description to quantify homogeneous freezing processes is based on the water activity criterion (WAC) as proposed by Koop et al. (2000). The WAC describes the homogeneous nucleation rate coefficients only as a function of the water activity, which makes this approach well applicable in numerical models. In this study, we investigate the homogeneous freezing behavior of aqueous sulfuric acid aerosol particles by means of a comprehensive collection of laboratory-based homogeneous freezing experiments conducted at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber, which were conducted as part of 17 measurement campaigns since 2007. The most recent experiments were conducted during October 2020 with special emphasis on temperatures below 200 K. Aqueous sulfuric acid aerosol particles of high purity were generated by particle nucleation in a gas flow composed of clean synthetic air and sulfuric acid vapor, which was added to the AIDA chamber. The resulting chamber aerosol had number concentrations from 30 cm−3 up to several thousand per cubic centimeter with particle diameters ranging from about 30 nm to 1.1 µm. Homogeneous freezing of the aerosol particles was measured at simulated cirrus formation conditions in a wide range of temperatures between 185 and 230 K with a steady increase of relative humidity during each experiment. At temperatures between about 205 K and about 230 K, the AIDA results agree well with the WAC-based predictions of homogeneous freezing onsets. At lower temperatures, however, the AIDA results show an increasing deviation from the WAC-based predictions towards higher freezing onsets. For temperatures between 185 and 205 K, the WAC-based ice saturation ratios for homogeneous freezing onsets increase from about 1.6 to 1.7, whereas the AIDA measurements show an increase from about 1.7 to 2.0 in the same temperature range. Based on the experimental results of our direct measurements, we suggest a new fit line to formulate the onset conditions of homogeneous freezing of sulfuric acid aerosol particles as an isoline for nucleation rate coefficients between 5×108 and 1013 cm−3 s−1. The potential significant impacts of the higher homogeneous freezing thresholds, as directly observed in the AIDA experiments under simulated cirrus formation conditions, on the model prediction of cirrus cloud occurrence and related cloud radiative effects are discussed.
000901822 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000901822 536__ $$0G:(GEPRIS)392369854$$aDFG project 392369854 - Erforschung tropischer Zirruswolken durch die Kombination von Labor- und Feldexperimenten mit Prozess- und Zirkulationsmodellen $$c392369854$$x1
000901822 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901822 7001_ $$0P:(DE-HGF)0$$aHöhler, Kristina$$b1
000901822 7001_ $$00000-0001-9419-5432$$aWagner, Robert$$b2
000901822 7001_ $$0P:(DE-HGF)0$$aSaathoff, Harald$$b3
000901822 7001_ $$00000-0002-9560-8072$$aSchnaiter, Martin$$b4
000901822 7001_ $$0P:(DE-HGF)0$$aSchorr, Tobias$$b5
000901822 7001_ $$0P:(DE-HGF)0$$aSteinke, Isabelle$$b6
000901822 7001_ $$0P:(DE-HGF)0$$aBenz, Stefan$$b7
000901822 7001_ $$00000-0001-7307-7189$$aBaumgartner, Manuel$$b8
000901822 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b9
000901822 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b10
000901822 7001_ $$0P:(DE-HGF)0$$aLeisner, Thomas$$b11
000901822 7001_ $$0P:(DE-HGF)0$$aMöhler, Ottmar$$b12$$eCorresponding author
000901822 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-14403-2021$$gVol. 21, no. 18, p. 14403 - 14425$$n18$$p14403 - 14425$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000901822 8564_ $$uhttps://juser.fz-juelich.de/record/901822/files/acp-21-14403-2021.pdf$$yOpenAccess
000901822 909CO $$ooai:juser.fz-juelich.de:901822$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000901822 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186876$$aForschungszentrum Jülich$$b0$$kFZJ
000901822 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b9$$kFZJ
000901822 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b10$$kFZJ
000901822 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000901822 9141_ $$y2021
000901822 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000901822 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000901822 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901822 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000901822 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000901822 920__ $$lyes
000901822 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000901822 9801_ $$aFullTexts
000901822 980__ $$ajournal
000901822 980__ $$aVDB
000901822 980__ $$aUNRESTRICTED
000901822 980__ $$aI:(DE-Juel1)IEK-7-20101013
000901822 981__ $$aI:(DE-Juel1)ICE-4-20101013