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A study of QAOA using the

Jülich Universal Quantum Computer Simulator



𝑁-qubit wave function:

                                  complex coefficients

→ Storage requires (complex double precision)

                              B of RAM

Simulating quantum computers

𝑁 = 4   → 256B𝑁 = 16 → 1MiB𝑁 = 31 → 32GiB𝑁 = 42 → 64TiB
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● Operations usually single- or two-qubit gates

→ Update of the state vector in two- or four-component updates

→ For single qubit gate     :

Simulating quantum computers
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● JUQCS
→ full state vector simulator (used for quantum supremacy)
→ simulates an ideal gate-based quantum computer
→ uses an efficient MPI communication scheme (distributed memory)
→ runs on supercomputers

● How many qubits can we simulate? 
→ Qubit number limited by available RAM
→ My Notebook: 30 qubits
→ At JSC:

43 qubits on Juwels Cluster/Booster

42 qubits on Juwels Booster (GPUs) → much faster

The Jülich Universal Quantum Computer Simulator (JUQCS)
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● Variational algorithm to find approximate solutions to optimization problems

● Variational state:

where
●             variational parameters,

●                                mixing Hamiltonian,

●                                                                 problem Hamiltonian

●          encodes the optimization problem

● Optimize for

The Quantum Approximate Optimization Algorithm (QAOA)
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Relation between QAOA and quantum annealing
What is quantum annealing?

Idea based on adiabatic theorem:

● Quantum system initialized in ground state of Hamiltonian 𝐻(𝑡=0)
● Hamiltonian 𝐻(𝑡) changes (sufficiently slowly) with time

 Quantum system stays in instantaneous eigenstate
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Relation between QAOA and quantum annealing
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● Quantum annealing Hamiltonian

where

● Simulate time evolution of quantum system (solve TDSE) under the Hamiltonian 𝐻(𝑠) with Suzuki-Trotter product-formula algorithm

→ Decomposition looks like a QAOA variational state

Familiar from QAOA’s   

        and

Willsch et al., QIP 19, 197 (2020)

De Raedt, Comp. Phys. Rep. 7, 1 (1987)

annealing schedule



Relation between QAOA and quantum annealing
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● Product-formula of quantum annealing

● Coarse discretization with large time step

→ Not accurate enough for genuine QA
● and a small number of steps

→ Time too short for adiabatic evolution

● AQA as an independent, heuristic method

● AQA as initialization for variational parameters of QAOA

● We use exact cover problems with 30-40 qubits in our study

Approximate Quantum Annealing (AQA)

Willsch et al., 

arXiv:2104.03293 (2021)



Results: QAOA and AQA performance
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● Similar success probabilities with 

AQA and QAOA

→ Where probability drops for 

QAOA, optimizer probably got 

stuck in local minimum

● For AQA, number of steps 50, for 

QAOA much smaller

→ BUT QAOA required of the order 

of 150-200 JUQCS calls/energy 

evaluations for optimization
Number of qubits

  AQA,  QAOA,QAOA,
Willsch et al., 

arXiv:2104.03293 (2021)



Efficiency of QAOA and AQA
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● AQA with 𝑝 steps requires same run time as single energy evaluation for 𝑝-step 

QAOA

→ This QAOA evaluation does not include the optimization

→ If optimization requires 𝑚 energy evaluations, 𝑝-step QAOA runs 𝑚 times as 

long as 𝑝-step AQA

→ In the same time it takes for 𝑝-step QAOA, we can run 𝑚×𝑝-step AQA

→ 𝑝-step QAOA as efficient as 𝑛-step AQA if 𝑚 ≤ 𝑛/𝑝 energy evaluations 

needed

● Does AQA solve all the problems?

→ Probably not, as we do not expect 𝑚×𝑝-step AQA to work very well on 

current NISQ devices
Willsch et al., 

arXiv:2104.03293 (2021)



Results: AQA as initialization for QAOA
Standalone AQA vs. AQA as initialization for QAOA
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● Standalone AQA

→ Success probability increases with number of 

steps (if 𝜏 ≤ 0.4 ns)

→ Success probability increases with step size 𝜏 up to 𝜏 = 0.4 ns
● QAOA with AQA-initialization

→ Improved success probabilities for  𝜏 ≤ 0.4 ns
→ For 𝜏 = 0.8 ns no visible improvement

● For large number of steps AQA better, for small 

number of steps QAOA better



Results: QAOA and AQA scalings
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● QAOA (dashed lines)

→ Parameters optimized for a 30-

qubit instance

→ For all other instances the same 

parameters are used

→ Success probabilities quite large

→ Scaling with qubit number 

exponential

● AQA (solid lines)

→ Scaling also exponential but with 

smaller prefactor in exponent for 

larger step size 𝜏 Willsch et al., 

arXiv:2104.03293 (2021)



Summary and outlook
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● Introduction of

→ JUQCS

→ QAOA

→ Quantum annealing

→ AQA

● Comparison of QAOA and AQA

→ Performance

→ Efficiency

→ Scaling

● Outlook

→ Simulation results look promising

→ Future steps: Test of AQA on genuine 

quantum hardware with ≥ 30 qubits, 

several hundreds of gates

→ Also test on different problem sets

D. Willsch, M. Willsch, F. Jin,

 K. Michielsen and H. De Raedt, 

arXiv:2104.03293 (2021)
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Thank you for your attention
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