001     901829
005     20211025171516.0
024 7 _ |a 10.1016/j.ecolind.2021.107841
|2 doi
024 7 _ |a 1470-160X
|2 ISSN
024 7 _ |a 1872-7034
|2 ISSN
024 7 _ |a 2128/28804
|2 Handle
024 7 _ |a altmetric:107071243
|2 altmetric
024 7 _ |a WOS:000663325100009
|2 WOS
037 _ _ |a FZJ-2021-03852
082 _ _ |a 630
100 1 _ |a George, Jan-Peter
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Method comparison of indirect assessments of understory leaf area index (LAIu): A case study across the extended network of ICOS forest ecosystem sites in Europe
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634559859_659
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Leaf area index (LAI) is a key ecological indicator for describing the structure of canopies and for modelling energy exchange between atmosphere and biosphere. While LAI of the forest overstory can be accurately assessed over large spatial scales via remote sensing, LAI of the forest understory (LAIu) is still largely ignored in ecological studies and ecosystem modelling due to the fact that it is often too complex to be destructively sampled or approximated by other site parameters. Additionally, so far only few attempts have been made to retrieve understory LAI via remote sensing, because dense canopies with high LAI are often hindering retrieval algorithms to produce meaningful estimates for understory LAI. Consequently, the forest understory still constitutes a poorly investigated research realm impeding ecological studies to properly account for its contribution to the energy absorption capacity of forest stands. This study aims to compare three conceptually different indirect retrieval methodologies for LAIu over a diverse panel of forest understory types distributed across Europe. For this we carried out near-to-surface measurements of understory reflectance spectra as well as digital surface photography over the extended network of Integrated Carbon Observation System (ICOS) forest ecosystem sites. LAIu was assessed by exploiting the empirical relationship between vegetation cover and light absorption (Beer-Lambert- Bouguer law) as well as by utilizing proposed relationships with two prominent vegetation indices: normalized difference vegetation index (NDVI) and simple ratio (SR). Retrievals from the three methods were significantly correlated with each other (r = 0.63–0.99, RMSE = 0.53–0.72), but exhibited also significant bias depending on the LAI scale. The NDVI based retrieval approach most likely overestimates LAI at productive sites when LAIu > 2, while the simple ratio algorithm overestimates LAIu at sites with sparse understory vegetation and presence of litter or bare soil. The purely empirical method based on the Beer-Lambert law of light absorption seems to offer a good compromise, since it provides reasonable LAIu values at both low and higher LAI ranges. Surprisingly, LAIu variation among sites seems to be largely decoupled from differences in climate and light permeability of the overstory, but significantly increased with vegetation diversity (expressed as species richness) and hence proposes new applications of LAIu in ecological modelling.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yang, Wei
|0 P:(DE-Juel1)176123
|b 1
|u fzj
700 1 _ |a Kobayashi, Hideki
|0 P:(DE-Juel1)136926
|b 2
700 1 _ |a Biermann, Tobias
|0 0000-0001-8538-1495
|b 3
700 1 _ |a Carrara, Arnaud
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cremonese, Edoardo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cuntz, Matthias
|0 0000-0002-5966-1829
|b 6
700 1 _ |a Fares, Silvano
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gerosa, Giacomo
|0 0000-0002-5352-3222
|b 8
700 1 _ |a Grünwald, Thomas
|0 0000-0003-2263-0073
|b 9
700 1 _ |a Hase, Niklas
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Heliasz, Michael
|0 0000-0003-2635-9604
|b 11
700 1 _ |a Ibrom, Andreas
|0 0000-0002-1341-921X
|b 12
700 1 _ |a Knohl, Alexander
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Kruijt, Bart
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Lange, Holger
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Limousin, Jean-Marc
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Loustau, Denis
|0 0000-0003-3990-400X
|b 17
700 1 _ |a Lukeš, Petr
|b 18
700 1 _ |a Marzuoli, Riccardo
|b 19
700 1 _ |a Mölder, Meelis
|b 20
700 1 _ |a Montagnani, Leonardo
|b 21
700 1 _ |a Neirynck, Johan
|b 22
700 1 _ |a Peichl, Matthias
|0 0000-0002-9940-5846
|b 23
700 1 _ |a Rebmann, Corinna
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Schmidt, Marius
|0 P:(DE-Juel1)144420
|b 25
700 1 _ |a Serrano, Francisco Ramon Lopez
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Soudani, Kamel
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Vincke, Caroline
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Pisek, Jan
|0 P:(DE-HGF)0
|b 29
773 _ _ |a 10.1016/j.ecolind.2021.107841
|g Vol. 128, p. 107841 -
|0 PERI:(DE-600)2063587-4
|p 107841
|t Ecological indicators
|v 128
|y 2021
|x 1470-160X
856 4 _ |u https://juser.fz-juelich.de/record/901829/files/1-s2.0-S1470160X21005069-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:901829
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)144420
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ECOL INDIC : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21