000901833 001__ 901833
000901833 005__ 20240705080646.0
000901833 0247_ $$2doi$$a10.3389/fncel.2021.706585
000901833 0247_ $$2Handle$$a2128/28771
000901833 0247_ $$2altmetric$$aaltmetric:114624187
000901833 0247_ $$2pmid$$a34630042
000901833 0247_ $$2WOS$$aWOS:000704579500001
000901833 037__ $$aFZJ-2021-03854
000901833 041__ $$aEnglish
000901833 082__ $$a610
000901833 1001_ $$0P:(DE-Juel1)169770$$aAbraham, Jella-Andrea$$b0
000901833 245__ $$aNSCs Under Strain—Unraveling the Mechanoprotective Role of Differentiating Astrocytes in a Cyclically Stretched Coculture With Differentiating Neurons
000901833 260__ $$aLausanne$$bFrontiers Research Foundation$$c2021
000901833 3367_ $$2DRIVER$$aarticle
000901833 3367_ $$2DataCite$$aOutput Types/Journal article
000901833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719996809_28440
000901833 3367_ $$2BibTeX$$aARTICLE
000901833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901833 3367_ $$00$$2EndNote$$aJournal Article
000901833 520__ $$aThe neural stem cell (NSC) niche is a highly vascularized microenvironment that supplies stem cells with relevant biological and chemical cues. However, the NSCs’ proximity to the vasculature also means that the NSCs are subjected to permanent tissue deformation effected by the vessels’ heartbeat-induced pulsatile movements. Cultivating NSCs under common culture conditions neglects the—yet unknown—influence of this cyclic mechanical strain on neural stem cells. Under the hypothesis that pulsatile strain should affect essential NSC functions, a cyclic uniaxial strain was applied under biomimetic conditions using an in-house developed stretching system based on cross-linked polydimethylsiloxane (PDMS) elastomer. While lineage commitment remained unaffected by cyclic deformation, strain affected NSC quiescence and cytoskeletal organization. Unexpectedly, cyclically stretched stem cells aligned in stretch direction, a phenomenon unknown for other types of cells in the mammalian organism. The same effect was observed for young astrocytes differentiating from NSCs. In contrast, young neurons differentiating from NSCs did not show mechanoresponsiveness. The exceptional orientation of NSCs and young astrocytes in the stretch direction was blocked upon RhoA activation and went along with a lack of stress fibers. Compared to postnatal astrocytes and mature neurons, NSCs and their young progeny displayed characteristic and distinct mechanoresponsiveness. Data suggest a protective role of young astrocytes in mixed cultures of differentiating neurons and astrocytes by mitigating the mechanical stress of pulsatile strain on developing neurons.
000901833 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000901833 536__ $$0G:(DE-HGF)POF4-5242$$a5242 - Information Storage and Processing in the Cell Nucleus (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000901833 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901833 7001_ $$0P:(DE-Juel1)186027$$aBlaschke, Stefan$$b1
000901833 7001_ $$0P:(DE-Juel1)176880$$aTarazi, Samar$$b2
000901833 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b3
000901833 7001_ $$0P:(DE-HGF)0$$aVay, Sabine U.$$b4
000901833 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b5
000901833 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b6$$ufzj
000901833 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b7
000901833 7001_ $$0P:(DE-HGF)0$$aRueger, Maria A.$$b8
000901833 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b9$$eCorresponding author
000901833 773__ $$0PERI:(DE-600)2452963-1$$a10.3389/fncel.2021.706585$$gVol. 15, p. 706585$$p706585$$tFrontiers in cellular neuroscience$$v15$$x1662-5102$$y2021
000901833 8564_ $$uhttps://juser.fz-juelich.de/record/901833/files/Abraham_2021_Front%20Cell%20Neurosci_NSCs%20under%20strain....pdf$$yOpenAccess
000901833 8564_ $$uhttps://juser.fz-juelich.de/record/901833/files/Abraham_2021_Front%20Cell%20Neurosci_NSCs%20under%20strain...post%20print.pdf$$yOpenAccess
000901833 909CO $$ooai:juser.fz-juelich.de:901833$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000901833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186027$$aForschungszentrum Jülich$$b1$$kFZJ
000901833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176880$$aForschungszentrum Jülich$$b2$$kFZJ
000901833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b3$$kFZJ
000901833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ
000901833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b7$$kFZJ
000901833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b9$$kFZJ
000901833 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000901833 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5242$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000901833 9141_ $$y2021
000901833 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000901833 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000901833 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CELL NEUROSCI : 2019$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901833 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000901833 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000901833 920__ $$lyes
000901833 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000901833 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x1
000901833 980__ $$ajournal
000901833 980__ $$aVDB
000901833 980__ $$aI:(DE-Juel1)INM-3-20090406
000901833 980__ $$aI:(DE-Juel1)IBI-2-20200312
000901833 980__ $$aUNRESTRICTED
000901833 9801_ $$aFullTexts