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Abnormal dynamic functional connectivity is linked to recovery
after acute ischemic stroke

Anna K. Bonkhoff1,2 | Markus D. Schirmer1,3 | Martin Bretzner1,4 |

Mark Etherton1 | Kathleen Donahue1 | Carissa Tuozzo1 | Marco Nardin1 |

Anne-Katrin Giese1,5 | Ona Wu6 | Vince D. Calhoun7 | Christian Grefkes2,8 |

Natalia S. Rost1

1J. Philip Kistler Stroke Research Center,

Massachusetts General Hospital, Boston,

Massachusetts

2Cognitive Neuroscience, Institute of

Neuroscience and Medicine (INM-3), Research

Centre Juelich, Juelich, Germany

3Department of Population Health Sciences,

German Centre for Neurodegenerative

Diseases (DZNE), Germany

4Neurosciences and Cognition, University of

Lille, Lille, France

5Department of Neurology, UniversityMedical

Center Hamburg-Eppendorf, Hamburg, Germany

6Athinoula A. Martinos Center for Biomedical

Imaging, Department of Radiology,

Massachusetts General Hospital, Charlestown,

Massachusetts

7Tri-institutional Center for Translational

Research in Neuroimaging and Data Science

(TReNDS), Georgia State University, Georgia

Institute of Technology, Emory University,

Atlanta, Georgia

8Department of Neurology, University

Hospital Cologne, Cologne, Germany

Correspondence

Anna K. Bonkhoff, J. Philip Kistler Stroke

Research Center, Massachusetts General

Hospital, 175 Cambridge Street, Suite #

300, Boston, MA 02114.

Email: abonkhoff@mgh.harvard.edu

Funding information

Deutsche Forschungsgemeinschaft, Grant/

Award Number: Project-ID 431549029;

National Institutes of Health, Grant/Award

Number: R01DA040487; NIH-NINDS, Grant/

Award Numbers: R01NS082285,

R01NS086905, U19NS115388

Abstract

The aim of the current study was to explore the whole-brain dynamic functional con-

nectivity patterns in acute ischemic stroke (AIS) patients and their relation to short and

long-term stroke severity. We investigated resting-state functional MRI-based dynamic

functional connectivity of 41 AIS patients two to five days after symptom onset. Re-

occurring dynamic connectivity configurations were obtained using a sliding window

approach and k-means clustering. We evaluated differences in dynamic patterns

between three NIHSS-stroke severity defined groups (mildly, moderately, and severely

affected patients). Furthermore, we built Bayesian hierarchical models to evaluate the

predictive capacity of dynamic connectivity and examine the interrelation with clinical

measures, such as white matter hyperintensity lesions. Finally, we established correla-

tion analyses between dynamic connectivity and AIS severity as well as 90-day neuro-

logical recovery (ΔNIHSS). We identified three distinct dynamic connectivity

configurations acutely post-stroke. More severely affected patients spent significantly

more time in a configuration that was characterized by particularly strong connectivity

and isolated processing of functional brain domains (three-level ANOVA: p < .05, post

hoc t tests: p < .05, FDR-corrected). Configuration-specific time estimates possessed

predictive capacity of stroke severity in addition to the one of clinical measures. Recov-

ery, as indexed by the realized change of the NIHSS over time, was significantly linked

to the dynamic connectivity between bilateral intraparietal lobule and left angular gyrus

(Pearson's r = −.68, p = .003, FDR-corrected). Our findings demonstrate transiently

increased isolated information processing in multiple functional domains in case of

severe AIS. Dynamic connectivity involving default mode network components signifi-

cantly correlated with recovery in the first 3 months poststroke.
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1 | INTRODUCTION

One in four adults over the age of 25 experiences a stroke during their

lifetime (Collaborators, 2018) and is thus frequently confronted with

multifaceted long-term impairments (Corbetta et al., 2015). Establishing

a comprehensive understanding of cerebral changes early after stroke

is of prime importance to successfully design rehabilitative strategies. In

this respect, functional neuroimaging has proven to be instrumental in

uncovering neural mechanisms of reorganization poststroke (Grefkes &

Fink, 2014; Ward, 2017). Motor impairments have previously been

linked to decreases in functional connectivity between sensorimotor

areas across hemispheres (Carter et al., 2010; Rehme et al., 2014). Post-

stroke cognitive impairments and affective symptoms have been asso-

ciated with functional connectivity alterations in default mode network

regions (Ding et al., 2014; Lassalle-Lagadec et al., 2012).

Conventional resting-state functional MRI (rsfMRI) analyses typi-

cally evaluate functional connectivity over the duration of entire scan

sessions (i.e., several minutes). Contrariwise, recently developed time-

varying—dynamic—functional network connectivity (dFNC) analyses

allow moment-to-moment connectivity strengths fluctuations and, by

these means, enable a time-resolution in the order of seconds (Allen

et al., 2014; Calhoun, Miller, Pearlson, & Adalı, 2014; Chang &

Glover, 2010). Numerous studies suggest that this dynamic approach

represents a powerful tool to gain novel insights into neurological dis-

eases, for example, migraine (Tu et al., 2019), Parkinson's disease (Kim

et al., 2017) and Huntington's disease (Espinoza et al., 2018). In case

of ischemic stroke, the dFNC analysis has been essential in revealing

transiently increased information exchange between motor domains

in moderate motor stroke and more isolated information processing in

severe motor stroke (Bonkhoff et al., 2020).

In extension to previous dFNC analyses in acute ischemic stroke

(AIS), we here investigated dynamic connectivity not only between

motor regions, but regions covering the whole brain of 41 AIS

patients. Additionally, we evaluated links to acute stroke severity, as

well as recovery. We hypothesized that large-scale, transient alter-

ations in information processing were driven by AIS severity and fea-

tured predictive capacity.

2 | MATERIALS AND METHODS

2.1 | Participants

We considered rsfMRI scans from 47 AIS patients who were admitted to

Massachusetts General Hospital, USA and subsequently enrolled in the

SALVO (statins augment small vessel function and improve stroke out-

comes) study between 2014 and 2019. The following SALVO-specific

inclusion criteriawere applied: (a) admission≤24 hours fromonset of focal

neurological symptoms consistent with a cerebrovascular syndrome,

(b) MRI findings corresponding to acute cerebral ischemic injury

(e.g., DWI-positive lesions), and (c) evidence of moderate to severeWMH

lesion load (Fazekas grade ≥ 2, Fazekas, Chawluk, Alavi, Hurtig, &

Zimmerman, 1987). Exclusion criteria included: (a) the primary

hemorrhagic stroke or evidence of secondary cause of stroke

(e.g., primary central nervous system vasculitis, auto-immune encephalitis,

known malignancy), (b) medical contraindications to MRI or gadolinium-

based contrast agents, (c) severe medical or behavioral co-morbidities and

(d) pregnancy or lactation at the time of screening. Language impairments

and neglect did not lead to study exclusion. One stroke patient had to be

excluded due to structural abnormalities (benign brain cyst) and five fur-

ther participants due to pronounced headmotion during image acquisition

(maximum framewise translation: >3 mm, maximum framewise rotation

>0.05 rad). Therefore, 41 subjects were included in the analyses. The

study was approved by the institutional review board (Massachusetts

General Hospital) and all participants, or their surrogates, gave written

informed consent at the time of enrollment.

2.2 | Clinical assessment

Individual stroke severity, quantified by means of the National Insti-

tutes of Health Stroke Scale score (NIHSS), was obtained by trained

neurologists at multiple instances post-stroke (admission, time of the

rsfMRI scan, 90 day). We defined three groups of stroke patients

based on NIHSS scores at time of scanning: mildly affected (NIHSS:

0–2, n = 19), moderately affected (NIHSS: 3–9, n = 15), and severely

affected (NIHSS 10–21, n = 7). Cutoffs were chosen based on the

sample-specific distribution of NIHSS scores (Table S1) with the aim

of creating as homogeneous groups with regard to stroke severity as

possible. In view of the less frequent recruitment of severely affected

patients and resulting group imbalance, we additionally performed

correlation and regression analyses to augment group-dependent with

group-independent results. Patient groups were compared with

respect to their white matter hyperintensity (WMH) lesion volume

and maximum framewise displacement (one-way three-level ANOVAs,

Power, Schlaggar, & Petersen, 2015).

2.3 | Data acquisition

Patients were scanned at admission (DWI, 1.5 T, General Electric

scanner) as well as 2 to 5 days after stroke onset (functional scans,

3.0 T, Siemens Skyra scanner). We here relied on diffusion weighted

images (DWI) and rsfMRI data with the following parameters: DWI:

echo-planar imaging, number of slices: 28; slice thickness: 5 mm; repe-

tition time (TR): 5500 ms; echo time (TE): 99 ms; in-plane resolution:

1.375 mm, and rsfMRI (�6 mins): gradient-echo planar imaging (EPI)

sequence, 150 volumes, number of slices: 42 (interleaved); slice thick-

ness: 3.51 mm; matrix size: 64 × 64; flip angle: 90�; repetition time

(TR): 2400 ms; in-plane resolution: 3.437 mm.

2.4 | Preprocessing of rsfMRI data

Preprocessing of the rsfMRI data was conducted using MATLAB

(Version R2019b, MathWorks, Inc., Natick, MA) and the Statistical
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Parametric Mapping software package (SPM12, Wellcome Trust Cen-

tre for Neuroimaging, London, UK; www.fil.ion.ucl.ac.uk/spm). After

removal of the first three images (“dummy images”) to ensure a steady

BOLD-signal, the remaining 147 volumes were head movement-

corrected through affine realignment to each scan's mean image.

Diffusion-weighted images, as well as corresponding lesion masks

were linearly co-registered to the same functional mean image (c.f.,

lesion overlap, Figure S1). All volumes were then non-linearly spatially

normalized employing the “unified segmentation” option with masked

lesions (i.e., setting lesioned tissue areas to values of zero to reduce

lesion-caused spatial distortions during the normalization step,

Ashburner & Friston, 2005; Brett, Leff, Rorden, & Ashburner, 2001).

Finally, images were smoothed using a Gaussian kernel with a full-

width at half maximum (FWHM) of 8 mm. For each patient, we esti-

mated the maximum time lag between time courses of the left and

right hemisphere (c.f., Supplementary Materials, Time delay analysis).

2.5 | Intrinsic connectivity networks

We used the spatially constrained independent component analysis

(ICA) algorithm (Du & Fan, 2013; Salman et al., 2019) to back-

reconstruct individual spatial information and time-courses of 50 ICA

components (as available from Allen et al., 2014). We relied on previ-

ously estimated ICA components, originating from the analysis of data

from healthy subjects (Allen et al., 2014) to avoid any potential lesion-

induced spatial biases. One component (caudate) did not pass quality

control after back-reconstruction (spatial inaccuracies) and was there-

fore excluded. The remaining 49 components were organized into

seven functional domains: (a) sensorimotor, (b) subcortical,

(c) cerebellar, (d) visual, (e) auditory, (f) cognitive control, and

(g) default mode network (Figure 1). Additional postprocessing steps

were applied: We detrended (i.e., accounted for linear, quadratic and

cubic trends), despiked using 3Ddespike, and filtered time courses by

a fifth-order Butterworth low-pass filter with a high-frequency cutoff

of 0.15 Hz. Lastly, each time-course was variance-normalized.

2.6 | Dynamic functional network connectivity

DFNC was computed within the sliding window framework (Allen

et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014). As in previ-

ous studies (Allen et al., 2014; Bonkhoff, Espinoza, et al., 2020), the

width of the window was chosen to be close to 44 s (18 TRs). Time

windows were additionally convolved with a Gaussian of 7 s (3 TRs)

and shifted at a rate of 1 TR at a time. Therefore, we obtained

129 tapered time windows per subject. Dynamic connectivity

between the various networks for each time window was computed

via the l1-regularized precision matrix (Varoquaux, Gramfort,

Poline, & Thirion, 2010). We regressed out the covariates age, sex,

maximum framewise translation, and rotation to decrease differ-

ences between patients. Finally, connectivity values were Fisher

Z-transformed.

2.7 | Estimation of connectivity states

We utilized k-means clustering (l1 distance, Lloyd, 1982) to reveal

latent dynamic functional connectivity configurations, that is, connec-

tivity states. These states represented repeating connectivity patterns

across time and subjects (Allen et al., 2014; Calhoun et al., 2014). The

clustering procedure was conducted in a two-step procedure: We first

derived the optimal number of clusters k (=number of connectivity

states) in an initial run. The optimal number k was defined based on

commonly used criteria in previous dFNC studies: The elbow criterion

resting upon the cluster validity index (Allen et al., 2014) and a state

frequency of >10% (Espinoza et al., 2019). Secondly, we computed

the final k connectivity states. For every subject, each time window

was assigned to one of the k connectivity states. In a final step, we

computed the following dFNC specific measures: (a) fraction times

(the subject-specific fraction of total time spent in a state), (b) dwell

times (the subject-specific average time spent in a state without inter-

ruption) and (c) state transitions (the subject-specific number of

changes between states over the duration of the scan). Additionally,

we obtained subject- and state-specific dFNC strength matrices.

2.8 | Statistical analysis

2.8.1 | Group differences

Differences in dynamic patterns (fraction and dwell times, transitions,

dFNC strengths) with respect to group membership and thus stroke

severity were determined in three-level one-way ANOVAs (level:

mildly vs. moderately vs. severely affected patients, level of signifi-

cance, p ≤ .05). In case of significant ANOVA effects, we followed up

with post hoc t tests between the individual groups (mild

vs. moderate, mild vs. severe, moderate vs. severe; level of signifi-

cance, p ≤ .05, False discovery rate [FDR]-corrected). We then con-

ducted correlation analyses between significant dFNC measures and

NIHSSscan pairs (Pearson correlation, level of significance, p ≤ .05,

FDR-corrected). We furthermore ran partial correlation analyses

between the significant dFNC measures and NIHSS-based recovery.

We captured recovery as realized recovery potential: (NIHSS90days –

NIHSSscan)/(0 – NIHSSscan) (Pearson correlation, level of significance,

p < .05, FDR-corrected, adjusted for NIHSSscan, c.f., Lin et al., 2019).

Given the inclusion criterion of a higher WMH lesion load, we per-

formed further correlation analyses between dFNC measures and the

WMH lesion load (Pearson correlation, level of significance, p ≤ .05,

FDR-corrected).

2.8.2 | Bayesian prediction of AIS severity

We constructed linear regression models to test the capacity of clini-

cal and dynamic connectivity derived variables to predict stroke sever-

ity at time of the scan. We employed Bayesian hierarchical models,

primarily as these models allow for (a) a full estimation of parameter

2280 BONKHOFF ET AL.

http://www.fil.ion.ucl.ac.uk/spm


uncertainty, (b) an intuitive interpretation of credibility intervals, and

(c) Bayesian model comparisons (Gelman & Hill, 2006). Furthermore,

given the inclusion criterion of a pronounced WMH load, the hierar-

chical nature of models permitted to investigate differential effects of

moderate versus high loads of WMH lesions on stroke severity. The

two groups of WMH load were integrated as a varying intercept.

Therefore, we initiated one intercept for the moderate and one for

the high WMH lesion load group. Both of these intercepts were com-

bined by a joint hyperprior. We then built individual models relying on

either admission NIHSS (the acute baseline model, c.f., Ktena

et al., 2019) or dFNC measures (dwell times for State 1–3, the acute

dynamic model). We did not integrate fraction times and numbers of

transitions in addition to dwell times to reduce probable collinearity of

input variables. Subsequently, we combined all of these input vari-

ables for an extended model of acute stroke severity (the acute

extended model). A final Bayesian model comparison based on leave-

one-out-cross-validation (LOOCV) was performed to determine the

most suitable among the three models to predict stroke severity of

future patients. In ancillary analyses, we evaluated the effects of fur-

ther covariates, that is, age, sex and the administration of intravenous

thrombolysis.

2.9 | Data and code availability statement

The authors agree to make the data available to any researcher for

the express purposes of reproducing the here presented results and

with the explicit permission for data sharing by the local institutional

review board. Preprocessing of data and dFNC were computed in

Matlab2019a (The Mathworks, Natick, MA) and used adjusted

F IGURE 1 Spatial maps of 49 intrinsic
connectivity networks of all ischemic
stroke subjects (n = 41). Networks were
assigned to seven functional domains:
Subcortical (SC, 3 networks, light blue),
auditory (AUD, 3 networks, blue), cortical
sensorimotor (SMN, 8 networks, dark
blue), visual (VIS, 10 networks, yellow),
cognitive control (CC, 14 networks,

orange), default mode network (DMN,
9 networks, brown), cerebellar domain
(CB, 3 networks, moccasin)
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template scripts from the GIFT toolbox (https://trendscenter.org/

software/gift/). Additional computations were run in Python3.7, par-

ticularly relying on the package pymc3 (Salvatier, Wiecki, &

Fonnesbeck, 2016) and rapidtide (Erdo�gan, Tong, Hocke, Lindsey, &

deB Frederick, 2016). Relevant jupyter notebooks can be found here:

https://github.com/AnnaBonkhoff/DFNC_AIS_recovery.

3 | RESULTS

3.1 | Clinical characteristics

Forty-one included AIS patients were scanned upon admission and

2 to 5 days after stroke onset. Stroke severity was captured at several

time instances, median NIHSSadmission was 4 (interquartile range

[IQR] = 10, 40 patients), median NIHSSscan: 3 (IQR = 4, 41 patients)

and median NIHSS90days: 0 (IQR = 1, 29 patients with follow-up-data).

Neither one of our stroke patients featured a hemispheric delay of

more than a second. Further demographical and clinical characteristics

are displayed in Table 1.

3.2 | Dynamic functional network connectivity

After the back-reconstruction of spatial maps and time courses of

49 networks originating from seven functional domains, we computed

and explored characteristics of dynamic functional connectivity.

Importantly, we regressed out effects of age, sex, and motion at this

point. The cluster validity index indicated three clusters as the optimal

solution. Thus, each subject's 129 functional connectivity matrices

were assigned to one of three connectivity states (Figure 2).

State 1 was the most segregated state and also appeared the least

often (overall frequency: 21%, Figure 2, left panel). It featured highly

positive intra-domain connectivity. Highly negative inter-domain con-

nectivity emerged between the cortical sensorimotor and the cerebellar

as well as the visual domains. State 2, the most frequent connectivity

state, displayed a markedly different connectivity pattern: It was char-

acterized by mostly neutral inter-domain and only slightly positive

intra-domain connectivity (frequency: 54%, Figure 2, middle panel).

State 3, occurring with a frequency of 25%, displayed highly positive

intra-domain connectivity in the sensorimotor and visual domains,

resembling State 1 in this respect, but also positive inter-domain con-

nectivity between these two domains (Figure 2, right panel).

3.3 | Temporal characteristics

Next, we evaluated differences in dynamic patterns between the three

groups of patients (mild: 0–2 vs. moderate: 3–9 vs. severe: 10–21

NIHSS). By means of three-level one-way ANOVAs, we detected signif-

icant differences of dynamic patterns relating to State 1, the state with

the highest functional segregation (Fraction times: p = .01; dwell times:

p = .002, Figure 3). While mildly and moderately affected patients did

not differ based on post hoc t tests, we found significantly different

fraction times between mildly and severely affected patients as well as

significantly different dwell times between mildly and severely as well

as moderately and severely affected patients (Fraction times: mild–

moderate: p = .51, mild–severe: p = .01, moderate–severe: p = .08,

FDR-corrected; dwell times: mild–moderate: p = .82, mild–severe:

p = .01, moderate–severe: p = .03, FDR-corrected). Severely affected

patients generally spent more time in State 1. These significant differ-

ences between discrete groups were also found in continuous Pearson

correlations: NIHSSscan significantly correlated with fraction, as well as

dwell times of State 1 (Fraction time and NIHSS: r = .49, p = .001, dwell

time and NIHSS: r = .55, p < .001). This, once again, demonstrated that

more profound symptom severity increased the amount of time spent

in the highly segregated State 1. The number of state transitions did

not differ significantly between the three groups of variably affected

patients (three-level one-way analysis of variance [ANOVA]: p = .40).

We did not observe any significant correlations between any of the

fraction or dwell times and recovery in stroke severity, or the WMH

lesion load (p > .05). The three groups of patients did not significantly

differ with respect to their WMH lesion load (mean [SD]: mild: 21.36

(29.5) ml, moderate: 13.1 (15.7), severe: 15.6 (15.8), p = .58) and the

maximum framewise displacement (mean [SD]: mild: 1.1 (0.6), moder-

ate: 1.0 (0.6), severe: 1.6 (0.4), p = .07).

3.4 | Alterations in dynamic connectivity

Focusing on the differences in dFNC strengths, we identified numer-

ous connectivity state-specific group differences (one-way ANOVA:

TABLE 1 Demographics and clinical characteristics of AIS patients
undergoing rsfMRI

Acute: stroke
patients (n = 41)

90 days:
stroke
patients
(n = 29)

Age (years, mean, SD) 67.3 (9.9) 66.9 (10.0)

Sex (in % female) 32% 27%

NIHSSadmission (median, IQR) 4 (10) 4 (9)

NIHSSscan (median, IQR) 3 (4) 2 (2)

NIHSS90days (median, IQR) – 0 (1)

Intravenous thrombolysis 34% 35%

Mechanical thrombectomy 2% 4%

Normalized lesion volume

(ml, mean, SD)

14.0 (21.1) 8.8 (13.7)

Vascular risk factors

Hypertension 70.7% 72.4%

Diabetes mellitus 19.5% 10.3%

Atrial fibrillation 26.8% 20.7%

Previous myocardial infarction 17.1% 20.7%

Current smoker 19.5% 20.7%

Previous smoker 41.5% 41.4%
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p ≤ .05). The densely connected State 1 contained most of these dif-

ferences. Specifically, post hoc t tests between mildly and moderately

affected patients for example revealed decreased dynamic connectiv-

ity between bilateral precentral areas and the left sensorimotor area

(p ≤ .05, FDR-corrected, Figure 4, left panel). Mildly and severely

affected patients comprised numerous significantly varying connectiv-

ity pairs (post hoc t tests: p ≤ .05, FDR-corrected, c.f., Figure 4 for

details, middle panel). These differences particularly involved connec-

tions between the bilateral superior temporal gyri and multiple cortical

sensorimotor areas. Dynamic connectivity differences between

moderately and severely affected patients predominantly pertained to

bilateral subcortical, superior temporal gyri and ventral precentral net-

works (post hoc t tests: p ≤ .05, FDR-corrected, Figure 4, right panel).

State 2, the weakly connected state, encompassed only two dynamic

connectivity pairs that were significantly different between patient

groups after FDR-correction: Mildly and severely affected patients dif-

fered in their dynamic connectivity between the right intraparietal lob-

ule and middle occipital gyrus. Severely affected patients presented

with an increased connectivity between bilateral superior parietal lob-

ules and middle temporal gyri in contrast to moderately affected

F IGURE 2 Three discrete connectivity states representing re-occurring dynamic connectivity across time and subject space. These states
demonstrated varying connectivity configurations between seven functional domains (c.f., Figure 1). Darker red color implies stronger positive,
darker blue stronger negative connectivity. Stated percentages correspond to state-specific fraction times across all subjects. The ordering of

states corresponds to the one introduced by the k-means algorithm

F IGURE 3 Fraction and dwell times for each of the three dynamic connectivity states and stroke severity defined subgroups of mildly,

moderately and severely affected patients (asterisks mark statistically significant differences between patient subgroups based on one-way
ANOVAs, p < .05). (a) Fraction times. Severely affected patients (NIHSS >9, upper row) presented with a markedly different dynamic pattern than
moderately (NIHSS 3–9, middle row) and mildly (NIHSS <3, bottom row) affected patients: In contrast to the other two patient groups that
preferred State 2, a particularly weakly connected state, severely affected patients spent significantly more time in the densely connected State 1.
(b) Dwell times. In parallel to the fraction time findings, severely affected patients spent significantly more time in State 1 at any one time in
comparison to the less affected patient groups
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patients (Figure S2). State 3 was characterized by increased dynamic

connectivity between the bilateral posterior insula and precuneus as

well as decreased dynamic connectivity between a bilateral putamen

network and anterior insula when contrasting moderately with mildly

affected patients. A decreased dynamic connectivity between the lin-

gual gyrus and right middle occipital gyrus was found when comparing

severely to mildly affected patients (Figure S3). Altogether, most of

these reported dynamic connectivity pairs were also significantly corre-

lated with the NIHSSscan (Figure S4). However, such a significant corre-

lation with the NIHSSscan was missing for the lateralized dynamic

connectivity decrease between cortical motor networks.

In a subsequent step, we investigated whether the dynamic con-

nectivity pairs that differed significantly between the groups also cor-

related with the realized recovery. We extracted two such

connectivity pairs with significant correlations: In State 1, the connec-

tivity of the bilateral intraparietal lobules and left angular gyrus was

significantly correlated with change in stroke severity (r = −.68,

p = .003, FDR-corrected, Figure 5a, upper plot, Figure 5b,c, upper row).

Furthermore, the dynamic connectivity between the bilateral putamen

network and the anterior insula within State 3 correlated strongly

with stroke recovery (r = .66, p = .05, FDR-corrected, Figure 5a, bot-

tom plot, Figure 5b,c, lower row). One further connectivity pair, featur-

ing the bilateral putamen network and superior temporal gyri (STG),

significantly correlated with recovery before the correction for multi-

ple comparisons (r = .61, p = .007, uncorrected, p = .08, FDR-

corrected, Figure 5a, bottom plot, Figure 5b,c, middle row), which may

motivate more focused further investigation in future studies

(Gibbs & Gibbs, 2015; Wood, Freemantle, King, & Nazareth, 2014).

The effects of age, sex, and motion in the scanner were accounted for

in the analyses reported above.

3.5 | Bayesian prediction of acute stroke severity

Bayesian hierarchical models, either taking NIHSSadmission or the

three dwell times as input, achieved comparable levels of explained

variance when predicting stroke severity at the time of scanning

(posterior predictive check: R2-scores: 32.2 and 32.8%, respectively).

The extended acute model combining NIHSSadmission and dwell times

increased explained variance to 62.1%. The leave-one-out-cross-val-

idation-based Bayesian model comparison also suggested the

extended acute model as the best performing model (LOOCV-

estimated deviance ± SE = 224.1 ± 11.9). The further two models,

considering either NIHSSadmission or the dwell times, followed on par

(Deviance ± SE = 242.7 ± 6.6 and 246.2 ± 10.3, respectively). Inter-

preting parameter weights: A higher NIHSSadmission score predicted a

higher NIHSSscan (posterior mean = 0.51, highest probability density

interval [HPDI] covering 94% uncertainty = 0.29–0.74, Figure 6a).

The same was true for higher dwell times in State 1 and, to a lesser

degree, to higher dwell times in State 2 and 3 (State 1: posterior

mean = 0.124, HPDI = 0.063 to 0.182; State 2: posterior

mean = 0.028, HPDI = −0.012 to 0.064; State 3: posterior

mean = 0.028, HPDI = −0.023 to 0.080, Figure 6b). Varying inter-

cepts for the groups of moderate and high white matter

hyperintensity loads only diverged in case of the model including

NIHSSadmission only (moderate WMH load: posterior mean = −0.266,

HPDI = −3.786 to 3.066, high WMH load: posterior mean = 1.441,

HPDI = −0.659 to 3.667). Here, higher white matter hyperintensity

load indicated a higher NIHSS outcome at the time of scanning. A

similar divergence of intercepts was not visible in the acute dynamic

or extended acute models. Ancillary analyses suggested a trend for

higher stroke severities with increasing age, but did not suggest any

F IGURE 4 Significant dynamic connectivity differences between mildly, moderately and severely affected patient groups in State 1 (one-way
ANOVAs: p < .05, post hoc t tests: p < .05, FDR-corrected). The functionally segregated state 1 comprised the most significantly altered
connectivity pairs. Severely affected patients comprised numerous dynamic connectivity pairs with enhanced connectivity compared with both
mildly and moderately affected patients. These changes primarily involved subcortical and cortical motor networks, as well as multiple
connections to the default mode network
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additional effect of the administration of rtPA or sex on the stroke

severity at time of scanning (R2-score = 64.9%).

4 | DISCUSSION

Dynamic functional network connectivity analyses permit the evalua-

tion of brain connectivity alterations in the range of seconds (Allen

et al., 2014; Calhoun et al., 2014; Chang & Glover, 2010). This

approach, therefore, may capture naturally fluctuating neural signals

in a more veridical and behaviorally relevant way (Vidaurre, Arenas,

Smith, & Woolrich, 2019). We here examined alterations of whole-

brain dynamic connectivity in 41 AIS patients in relation to the sever-

ity of their acute stroke deficit. We identified three dynamic connec-

tivity states, which were strongly related to the severity of symptoms.

Most remarkably, severely affected stroke patients (NIHSS>9) spent

F IGURE 5 Recovery in the first 3 months after stroke is linked to specific acute dynamic connectivity pairs. (a) Recovery-correlated
connectivity pairs are highlighted within dynamic connectivity State 1 (upper row) and State 3 (bottom row). These connectivity pairs were
located in subcortical (SC), auditory (AUD), cognitive control (CC) and default mode network (DMN) domains. (b) Brain renderings of involved
networks. In State 1, the connectivity between the bilateral intraparietal lobule and left angular gyrus was significantly correlated with recovery
after correction for multiple comparison. In State 3, the connectivity between bilateral putamen and anterior insula was significantly correlated
with recovery after correction for multiple comparisons, while the connectivity between bilateral putamen and superior temporal gyrus was
significantly correlated with recovery before correction for multiple comparisons. These latter findings may motivate a re-examination in future
studies. (c) Correlation plots. Recovery, measured as realized change in NIHSS and adjusted for NIHSSscan, is plotted on the x-axis, dFNC strength
on the y-axis (p-values are FDR-corrected). The size of the dots corresponds to an individual's stroke severity at time of scanning
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significantly more time in State 1 with highly positive intra- and highly

negative inter-domain connectivity. This strong intra-domain connec-

tivity was particularly apparent for the visual and sensorimotor

domains. In contrast, State 2, a weakly connected state, comprised

rather low intra- and mostly neutral inter-domain connectivity. State

3 featured a combination of both previous states with positive intra-

F IGURE 6 Bayesian hierarchical modeling of the stroke severity at time of scanning: Posterior parameter distributions. (a) Acute baseline
model. The model based on the NIHSS score at admission, thus on average 3 days earlier, could predict the NIHSS at time of scanning with an
explained variance of 32.3% (obtained via posterior predictive checks). The intercept for patients with a higher white matter hyperintensity load
indicated a higher predicted NIHSS score at time of scanning (light blue) compared to the group of patients with a lower white matter
hyperintensity load (dark blue). The parameter posterior mean of 0.51 for the NIHSS scores at admission denoted a decrease in NIHSS stroke
severity until the time of scanning (right plot). (b) Acute dynamic model. A higher dwell time in any of the three states predicted a higher NIHSS
score at the time of scanning, the explained variance was 32.8%. This effect was particularly strong for dwell times in State 1 (dark green). The
effect of the white matter hyperintensity load on stroke severity did not differ between the groups of moderate and high white matter
hyperintensity loads. (c) Acute extended model relying on the NIHSS at admission as well as the derived dwell times. A higher NIHSS score at
admission, as well as higher dwell times, mainly in State 1, continued to be predictive of a higher NIHSS score at the time of scanning. Explained
variance of the joint model was 62.1%
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domain connectivity and slightly positive inter-domain connectivity.

While the times spent in State 2 and 3 did not differ significantly

between patient groups, all three states comprised significantly

altered dynamic connectivity between multiple brain areas.

4.1 | Segregation and acute stroke severity

Patients experiencing severe strokes had a significant predilection for

the densely connected State 1. Since this state exhibited strong posi-

tive intra-network connectivity, brain areas belonging to the same

functional domain, for example, the precentral and postcentral areas

of the cortical sensorimotor domain, could easily exchange informa-

tion. Conversely, the strong negative inter-network connectivity indi-

cated a lower level of communication between different functional

domains. This pattern of isolated information processing within func-

tional domains can be interpreted as functional segregation. Functional

integration, on the other hand, implies an effortless information

transfer within and between functional domains (Eickhoff &

Grefkes, 2011).

A comparable preference for a segregated state in case of more

severe deficits has recently been described in an independent cohort

of acute stroke patients, who presented with a comparable spectrum

of symptom severity and were also scanned within the first days after

their cerebrovascular events (Bonkhoff, Espinoza, et al., 2020). In this

study, patients with severe motor impairments had a significantly

higher probability of transitioning into a dynamic connectivity state

that was characterized by a high segregation between motor domains.

Paralleling these findings, a recent study described an increasing seg-

regation between somatomotor systems due to cast-induced inactiv-

ity of the dominant upper limb in otherwise healthy adults (Newbold

et al., 2020). Further nonstroke-related studies suggest an association

between higher levels of segregation and larger gains in cognitive and

motor skill learning in health (Mattar et al., 2018) and disease

(Arnemann et al., 2015). Nonetheless, we here did not find a signifi-

cant correlation between the level of segregation and changes in

stroke severity in the first 3 months poststroke. Therefore, the

dynamic increase in segregation observed in our study primarily

appeared as an expression of deteriorated, lost function, and not a

mechanism supporting brain plasticity and recovery.

Neuropsychiatric diseases, such as schizophrenia, bipolar disor-

der or autism, have primarily been linked to increased times spent in

weakly connected states, such as our State 2 (c.f., schizophrenia:

Damaraju et al., 2014, bipolar disorder: Rashid, Damaraju,

Pearlson, & Calhoun, 2014, autism: Fu et al., 2019). This increased

occurrence of less segregated states was suggested to represent

reduced vigilance and enhanced self-focused thought (Allen

et al., 2014; Marusak et al., 2017). On the other hand, many neuro-

logical diseases, for example, migraine, anti-NMDA-receptor

encephalitis, Parkinson's disease and—as also presented here—

stroke show the opposite pattern. Neurological patients apparently

exhibit a preference for highly connected, segregated dynamic con-

nectivity states, such as our State 1. This preference may thus

denote a joint signature of limited neurological function (c.f.,

migraine: Tu et al., 2019, anti-NMDA-receptor encephalitis: von

Schwanenflug et al., 2020, Parkinson's disease: Kim et al., 2017,

stroke: Bonkhoff, Espinoza, et al., 2020).

4.2 | Alterations in dynamic connectivity: Acute
stroke severity

We detected wide-spread differences in dynamic connectivity

between brain areas of various functional domains. These connectiv-

ity pairs were significantly altered between the three severity defined

groups of stroke patients and also significantly correlated with stroke

severity at time of scanning across the entirety of stroke patients. In

particular, we noted the inter-hemispheric decrease in connectivity

between cortical motor areas that is frequently reported in rsfMRI

stroke studies focused on motor impairments (Carter et al., 2010;

Golestani et al., 2013; Rehme et al., 2014; Wang et al., 2010). How-

ever, we ascertained this alteration between mildly and moderately

affected patients only. We did not detect similar connectivity

decreases between mildly and severely or moderately and severely

affected patients, despite the prior expectation that more severe

stroke symptoms would cause more extensive changes. A comparable

discrepancy was also observed in a previous dFNC study in AIS

patients (Bonkhoff, Espinoza, et al., 2020). Importantly, the initial

descriptions of this specific connectivity decrease between bilateral

motor areas were based on plain comparisons of stroke patients and

controls (Carter et al., 2010; Golestani et al., 2013; Rehme

et al., 2014; Wang et al., 2010). The exact amount of motor impair-

ment was not considered and analyses therefore did not allow for

more granular observations of links between connectivity strengths

and symptom severity. Thus, future studies could aim to confirm and

further elucidate the biological meaning of bilateral motor area con-

nectivity in relation to stroke severity—for example, is it beneficial or

detrimental in the process of stroke recovery?

4.3 | Alterations in dynamic connectivity:
Recovery of stroke severity

Dynamic connectivity between three network pairs was either signifi-

cantly correlated with the realized recovery in stroke severity in the

first 3 months after stroke or showed strong trends. The densely con-

nected State 1 comprised a significant negative correlation between

the change in stroke severity and the dynamic connectivity of the

default mode networks bilateral intraparietal lobule and left angular

gyrus. Additionally, State 3 presented two positive correlations

between recovery in stroke severity and the dynamic connectivity of

bilateral putamen and bilateral superior temporal gyrus, as well as the

same putamen network and bilateral anterior insula. Observed changes

hence involved the subcortical motor, auditory, cognitive control, and

default mode network domains. The revealed importance of the sub-

cortical putamen connectivity for stroke outcome may primarily relate
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to the recovery of motor symptoms that account for a substantial

fraction of NIHSS points. With regard to the cognitive control and

default mode networks: These domains are well known to encompass

cortical hubs that are globally well-connected and essential to orches-

trate various brain functions (Van Den Heuvel & Sporns, 2011).

Recent stroke studies relying on structural MRI data already indicated

worse stroke outcomes the more of such well-connected areas were

affected by stroke lesions (Ktena et al., 2019; Schirmer et al., 2019).

Previous functional MRI studies have also reported disturbed func-

tional connectivity within the default mode network when comparing

subacute ischemic stroke patients and healthy controls, independent

of any specific, cognitive deficits or stroke severity (Ding et al., 2014;

Tuladhar et al., 2013). While the extracted areas slightly differ

between studies, likely due to varying outcome measures, group defi-

nitions and scanning time points, previous studies and ours combined

suggest that cognitive control and default mode networks may play

essential roles for stroke outcome and recovery in addition to motor-

related domains.

4.4 | Modeling stroke severity

The individual dwell times, i.e., the time spent in all the three states

without any interruption, proved to be equally effective in predicting

the stroke severity at the time of scanning as the NIHSS score at the

time of admission based on our Bayesian hierarchical models

(Gelman & Hill, 2006). Moreover, the combination of dynamic connec-

tivity measures and clinical information led to the highest prediction

performance, as it was the highest-ranked model in the Bayesian

model comparison. However, the maximum explained variance of

62% still leaves a substantial amount of the variance in recovery

unexplained and might thus call for an even more comprehensive col-

lection of outcome predictors (Bonkhoff et al., 2020). Our ancillary

analysis already suggested an additionally relevant effect of age on

the stroke severity. However, we did not detect any effects of sex or

intravenous thrombolysis and did not have access to further clinical

characteristics, such as perfusion deficits, the status of the collateral

circulation, and the presence of large vessel occlusions, with probable

predictive capacities.

Nonetheless, the increase in prediction performance based on

our dynamic connectivity measures, as here observed, can be seen

as evidence, that they represent information going beyond that of

clinical measures. These dFNC measures may thus represent valid

additional predictors of stroke outcome. This is yet a further demon-

stration of the potential utility of neuroimaging markers for the pre-

diction of stroke symptoms. Previous studies have already begun to

highlight the value of MRI derived measures. Examples of such pre-

dictors comprise the number of lesioned rich club regions, as

obtained from structural MRI data (Schirmer et al., 2019). Lesion

topographies as inferred from acute diffusion tensor imaging

(Moulton, Valabregue, Lehéricy, Samson, & Rosso, 2019), static con-

nectivity between motor areas (Rehme et al., 2014), static whole-

brain connectivity (Puig et al., 2018) and information on the network

topology (Ktena et al., 2019), as characterized by functional

MRI data.

White matter disease has been associated with poorer early neu-

rological outcomes after stroke in recent years (Etherton et al., 2019;

Etherton, Wu, & Rost, 2016). We here investigated the differential

effects of white matter hyperintensities on stroke severity by means

of a hierarchical intercept term. In case of the admission-NIHSS

model, group-wise intercepts diverged: In accordance with previous

studies, a higher white matter hyperintensity lesion load was predic-

tive of a higher stroke severity at the time of scanning. Importantly,

this effect was independent of the initial admission stroke severity.

4.5 | Further limitations and future directions

While of relatively modest sample size (n = 41), this study is both

unique to and yet comparable with other published stroke cohorts

undergoing rsfMRI in the acute post-stroke recovery phase. It is

unique in its approach of assessing acute alterations in dynamic con-

nectivity exclusively within strata of variably affected stroke patients,

without the direct comparison to a healthy control group. Rather, the

group of mildly affected stroke patients represents a control group to

more severely affected patients. Importantly, healthy controls and

patients probably differ not only with respect to the AIS, but also their

chronic brain health profiles, as for example expressed by WMH

lesion loads. This circumstance can lead to potential confounds—that,

on the other hand, can be alleviated when contrasting patient sub-

groups with conceivably more similar risk profiles. Furthermore, our

dataset is comparable in size with prior dynamic functional connectiv-

ity studies in the first few days after stroke (Hu et al., 2018:

19 patients; Bonkhoff, Espinoza, et al., 2020: 31 patients; Bonkhoff,

Rehme, et al., 2020: 54 patients). Notably, one of our main findings,

that is, favored transiently increased segregation in case of a high

stroke severity, is well in line with previous reports of increased tran-

sition likelihood to segregated states in case of severe motor impair-

ments (Bonkhoff, Espinoza, et al., 2020). Altogether, this agreement

demonstrates the overall robustness of results for these kinds of

dataset sizes.

The reliability of dynamic analyses may be comparatively inferior

to the one of static functional analyses (Zhang, Baum, Adduru,

Biswal, & Michael, 2018) and it was suggested to increase the dura-

tion of scans beyond 10 min to allow for the exploration of all aspects

of dynamic connectivity alterations (Hutchison et al., 2013). Hence,

our relatively short current scan length of �6 min can be considered a

limitation of this study. However, we opted for this length to increase

the clinical feasibility. Lastly, the aforementioned agreement between

dynamic connectivity stroke studies may indicate that our scan length

was sufficient for a stable derivation of dynamic connectivity.

Furthermore, previous research has identified more frequently

occurring pronounced hemodynamic lags of resting-state signals in

patients with cerebrovascular disease, that can have distorting effects

on functional connectivity evaluations (Christen et al., 2015; Siegel,

Snyder, Ramsey, Shulman, & Corbetta, 2016). In accordance with
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recommendations by Siegel and colleagues on how to approach

potential hemodynamic lags in stroke patients' rsfMRI data (Siegel,

Shulman, & Corbetta, 2017), we here focused on ensuring the

absence of severe and widespread time delays (i.e., no entire hemi-

sphere was delayed by more than 1 s relative to the other hemi-

sphere). In future investigations, our hemisphere-focused, spatially

coarse-grained approach to time delay analyses could be rendered

more spatially specific (Siegel et al., 2016; Tanrıtanır et al., 2020) and

advanced methods to correct for time delays could be considered

(Erdo�gan et al., 2016; Jahanian, Christen, Moseley, &

Zaharchuk, 2018).

Comparable to many previous stroke imaging studies (Salvalaggio,

De Filippo De Grazia, Zorzi, Thiebaut de Schotten, & Corbetta, 2020;

Stockert et al., 2020; Volz et al., 2016), our aim was to concurrently

investigate direct, as well as indirect lesion effects, since both of them

can lead to differences in behavior. Thus, we decided against the

exclusion of lesioned brain regions in the dynamic functional connec-

tivity analysis itself. Future studies could complement our approach

by focusing on only indirect lesion effects and exclude brain regions

affected by ischemia and perfusion deficits, as for example indicated

by DWI-hyperintense lesions and rsfMRI-based hemodynamic delays.

In this study, we focused on stroke severity, measured on the

NIHSS scale, as the main outcome of interest. The NIHSS can already

be considered more granular than the frequently used modified

Rankin Scale score. Given that the NIHSS ascribes high weights to

motor and language impairments, the alterations seen here conceiv-

able mostly relate to these impairment categories. Nonetheless, the

unavailability of an even more fine-grained score that would capture

specific impairments, for example, in the cognitive or language

domains, can be seen as a current limitation. Especially in view of

numerous insight-generating dFNC studies in the field of cognitive

decline (e.g., subcortical ischemic vascular disease: Fu et al., 2019,

Alzheimer's disease: de Vos et al., 2018), future studies are warranted

to explore dynamic connectivity alterations in relation to these spe-

cific symptoms post-stroke further.

Finally, while stroke populations may generally have a higher load

of WMH lesions (Rost et al., 2010), we embraced this characteristic

even more explicitly by recruiting stroke patients with higher WMH

lesions loads. This criterion may have had an effect on functional con-

nectivity on its own, as previous literature suggests connectivity alter-

ations based on white matter disease (Reijmer et al., 2015). However,

we here did not find any significant correlations between the WMH

lesion load and any of the dynamic connectivity estimates. We further-

more included the WMH lesion load in our Bayesian prediction models,

which rendered their influence on stroke outcome apparent. Our

approach may motivate a more frequent inclusion of WMH lesion load

as proxy of chronic small vessel disease in future stroke imaging studies.

5 | CONCLUSION

We here revealed transiently increased isolated information

processing of functional domains in severe stroke by leveraging

dynamic functional network connectivity analyses. Since we did not

observe a correlation between this enhanced isolated information

processing and the amount of recovery poststroke, this alteration was

primarily interpretable as expression of deteriorated function. The

change in stroke severity in the first 3 months poststroke was further-

more linked to dynamic connectivity involving default mode network

components, suggesting a pivotal role of this domain in stroke

recovery.
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