000901839 001__ 901839
000901839 005__ 20220121142908.0
000901839 0247_ $$2doi$$a10.1161/STROKEAHA.120.032511
000901839 0247_ $$2ISSN$$a0039-2499
000901839 0247_ $$2ISSN$$a1524-4628
000901839 0247_ $$2Handle$$a2128/28901
000901839 0247_ $$2altmetric$$aaltmetric:110039974
000901839 0247_ $$2pmid$$apmid:34281374
000901839 0247_ $$2WOS$$aWOS:000687824000041
000901839 037__ $$aFZJ-2021-03860
000901839 041__ $$aEnglish
000901839 082__ $$a610
000901839 1001_ $$0P:(DE-HGF)0$$aBlaschke, Stefan$$b0
000901839 245__ $$aTranslating Functional Connectivity After Stroke: Functional Magnetic Resonance Imaging Detects Comparable Network Changes in Mice and Humans
000901839 260__ $$aPhiladelphia, Pa.$$bLippincott Williams & Wilkins$$c2021
000901839 3367_ $$2DRIVER$$aarticle
000901839 3367_ $$2DataCite$$aOutput Types/Journal article
000901839 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642756020_23925
000901839 3367_ $$2BibTeX$$aARTICLE
000901839 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901839 3367_ $$00$$2EndNote$$aJournal Article
000901839 520__ $$aBackground and Purpose:The translational roadblock has long impeded the implementation of experimental therapeutic approaches for stroke into clinical routine. Considerable interspecies differences, for example, in brain anatomy and function, render comparisons between rodents and humans tricky, especially concerning brain reorganization and recovery of function. We tested whether stroke-evoked changes in neural networks follow similar patterns in mice and patients using a systems-level perspective.Methods:We acquired resting-state functional magnetic resonance imaging data during the early poststroke phase in a sample of human patients and compared the observed network changes with data from 2 mouse stroke models, that is, photothrombosis and distal middle cerebral artery occlusion. Importantly, data were subjected to the same processing steps, allowing a direct comparison of global network changes using graph theory.Results:We found that network parameters computed for both mouse models of stroke and humans follow a similar pattern in the postacute stroke phase. Parameters indicating the global communication structure’s facilitation, such as small worldness and characteristic path length, were similarly changed in humans and mice in the first days after stroke. Additionally, small worldness correlated with concurrent motor impairment in humans. Longitudinal observation in the subacute phase revealed a negative correlation between initial small worldness and motor recovery in mice.Conclusions:We show that network measures based on resting-state functional magnetic resonance imaging data after stroke obtained in mice and humans share notable features. The observed network alterations could serve as therapeutic readout parameters for future translational studies in stroke research.
000901839 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000901839 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901839 7001_ $$0P:(DE-Juel1)142144$$aHensel, Lukas$$b1
000901839 7001_ $$0P:(DE-HGF)0$$aMinassian, Anuka$$b2
000901839 7001_ $$00000-0002-9429-2475$$aVlachakis, Susan$$b3
000901839 7001_ $$0P:(DE-Juel1)171739$$aTscherpel, Caroline$$b4
000901839 7001_ $$00000-0002-3289-7807$$aVay, Sabine U.$$b5
000901839 7001_ $$00000-0002-6183-6253$$aRabenstein, Monika$$b6
000901839 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b7
000901839 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b8
000901839 7001_ $$0P:(DE-Juel1)176651$$aHoehn, Mathias$$b9
000901839 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b10
000901839 7001_ $$00000-0001-8036-395X$$aRueger, Maria A.$$b11$$eCorresponding author
000901839 773__ $$0PERI:(DE-600)1467823-8$$a10.1161/STROKEAHA.120.032511$$gVol. 52, no. 9, p. 2948 - 2960$$n9$$p2948 - 2960$$tStroke$$v52$$x1524-4628$$y2021
000901839 8564_ $$uhttps://juser.fz-juelich.de/record/901839/files/Blaschke_2021_Stroke_Translating%20functional%20connectivity...finales%20pdf-1.pdf$$yRestricted
000901839 8564_ $$uhttps://juser.fz-juelich.de/record/901839/files/Blaschke_2021_Stroke_Translational%20fmri.docx$$yPublished on 2021-07-20. Available in OpenAccess from 2022-01-20.
000901839 909CO $$ooai:juser.fz-juelich.de:901839$$popenaire$$pVDB$$popen_access$$pdriver$$pdnbdelivery
000901839 9101_ $$0I:(DE-HGF)0$$60000-0002-9429-2475$$aExternal Institute$$b3$$kExtern
000901839 9101_ $$0I:(DE-HGF)0$$60000-0002-3289-7807$$aExternal Institute$$b5$$kExtern
000901839 9101_ $$0I:(DE-HGF)0$$60000-0002-6183-6253$$aExternal Institute$$b6$$kExtern
000901839 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b8$$kFZJ
000901839 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176651$$aForschungszentrum Jülich$$b9$$kFZJ
000901839 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b10$$kFZJ
000901839 9101_ $$0I:(DE-HGF)0$$60000-0001-8036-395X$$aExternal Institute$$b11$$kExtern
000901839 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000901839 9141_ $$y2021
000901839 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000901839 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTROKE : 2019$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSTROKE : 2019$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2021-02-04$$wger
000901839 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-04
000901839 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000901839 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000901839 920__ $$lyes
000901839 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000901839 980__ $$ajournal
000901839 980__ $$aVDB
000901839 980__ $$aI:(DE-Juel1)INM-3-20090406
000901839 980__ $$aUNRESTRICTED
000901839 9801_ $$aFullTexts