000901843 001__ 901843
000901843 005__ 20230303201753.0
000901843 0247_ $$2doi$$a10.1002/cbic.202100427
000901843 0247_ $$2ISSN$$a1439-4227
000901843 0247_ $$2ISSN$$a1439-7633
000901843 0247_ $$2altmetric$$aaltmetric:115224003
000901843 0247_ $$2pmid$$apmid:34596326
000901843 0247_ $$2WOS$$aWOS:000706751900001
000901843 0247_ $$2Handle$$a2128/30642
000901843 037__ $$aFZJ-2021-03862
000901843 082__ $$a540
000901843 1001_ $$0P:(DE-Juel1)179370$$aKappauf, Katrin$$b0
000901843 245__ $$aModulation of transaminase activity by encapsulation in temperature‐sensitive poly(N‐acryloyl glycinamide) hydrogels
000901843 260__ $$aWeinheim$$bWiley-VCH$$c2021
000901843 3367_ $$2DRIVER$$aarticle
000901843 3367_ $$2DataCite$$aOutput Types/Journal article
000901843 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643794564_20348
000901843 3367_ $$2BibTeX$$aARTICLE
000901843 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901843 3367_ $$00$$2EndNote$$aJournal Article
000901843 520__ $$aSmart hydrogels hold much potential for biocatalysis, not only for the immobilization of enzymes, but also for the control of enzyme activity. We investigated upper critical solution temperature-type poly N-acryloyl glycinamide (pNAGA) hydrogels as a smart matrix for the amine transaminase from Bacillus megaterium (BmTA). Physical entrapment of BmTA in pNAGA hydrogels results in high immobilization efficiency (>89 %) and high activity (97 %). The temperature-sensitiveness of pNAGA is preserved upon immobilization of BmTA and shows a gradual deswelling upon temperature reduction. While enzyme activity is mainly controlled by temperature, deactivation tended to be higher for immobilized BmTA (≈62–68 %) than for free BmTA (≈44 %), suggesting a deactivating effect due to deswelling of the pNAGA gel. Although the deactivation in response to hydrogel deswelling is not yet suitable for controlling enzyme activity sufficiently, it is nevertheless a good starting point for further optimization.
000901843 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000901843 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901843 7001_ $$0P:(DE-HGF)0$$aMajstorovic, Nikola$$b1
000901843 7001_ $$0P:(DE-HGF)0$$aAgarwal, Seema$$b2
000901843 7001_ $$0P:(DE-Juel1)144643$$aRother, Dörte$$b3
000901843 7001_ $$0P:(DE-Juel1)176533$$aClaaßen, Christiane$$b4$$eCorresponding author
000901843 773__ $$0PERI:(DE-600)2020469-3$$a10.1002/cbic.202100427$$gp. cbic.202100427$$n24$$p 3452-3461$$tChemBioChem$$v22$$x1439-7633$$y2021
000901843 8564_ $$uhttps://juser.fz-juelich.de/record/901843/files/cbic.202100427.pdf$$yOpenAccess
000901843 8767_ $$d2021-10-13$$eHybrid-OA$$jDEAL
000901843 909CO $$ooai:juser.fz-juelich.de:901843$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000901843 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144643$$aForschungszentrum Jülich$$b3$$kFZJ
000901843 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176533$$aForschungszentrum Jülich$$b4$$kFZJ
000901843 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000901843 9141_ $$y2021
000901843 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMBIOCHEM : 2019$$d2021-01-30
000901843 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000901843 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000901843 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901843 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000901843 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000901843 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000901843 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000901843 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000901843 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000901843 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000901843 980__ $$ajournal
000901843 980__ $$aVDB
000901843 980__ $$aUNRESTRICTED
000901843 980__ $$aI:(DE-Juel1)IBG-1-20101118
000901843 980__ $$aAPC
000901843 9801_ $$aAPC
000901843 9801_ $$aFullTexts