000901866 001__ 901866
000901866 005__ 20230815122845.0
000901866 0247_ $$2doi$$a10.3390/ijms221910345
000901866 0247_ $$2ISSN$$a1422-0067
000901866 0247_ $$2ISSN$$a1661-6596
000901866 0247_ $$2Handle$$a2128/28799
000901866 0247_ $$2pmid$$a34638686
000901866 0247_ $$2WOS$$aWOS:000708182600001
000901866 037__ $$aFZJ-2021-03874
000901866 082__ $$a540
000901866 1001_ $$0P:(DE-HGF)0$$aNavarro-Retamal, Carlos$$b0$$eCorresponding author
000901866 245__ $$aComputational Analyses of the AtTPC1 (Arabidopsis Two-Pore Channel 1) Permeation Pathway
000901866 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2021
000901866 3367_ $$2DRIVER$$aarticle
000901866 3367_ $$2DataCite$$aOutput Types/Journal article
000901866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636560326_7899
000901866 3367_ $$2BibTeX$$aARTICLE
000901866 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901866 3367_ $$00$$2EndNote$$aJournal Article
000901866 520__ $$aTwo Pore Channels (TPCs) are cation-selective voltage- and ligand-gated ion channels in membranes of intracellular organelles of eukaryotic cells. In plants, the TPC1 subtype forms the slowly activating vacuolar (SV) channel, the most dominant ion channel in the vacuolar membrane. Controversial reports about the permeability properties of plant SV channels fueled speculations about the physiological roles of this channel type. TPC1 is thought to have high Ca2+ permeability, a conclusion derived from relative permeability analyses using the Goldman–Hodgkin–Katz (GHK) equation. Here, we investigated in computational analyses the properties of the permeation pathway of TPC1 from Arabidopsis thaliana. Using the crystal structure of AtTPC1, protein modeling, molecular dynamics (MD) simulations, and free energy calculations, we identified a free energy minimum for Ca2+, but not for K+, at the luminal side next to the selectivity filter. Residues D269 and E637 coordinate in particular Ca2+ as demonstrated in in silico mutagenesis experiments. Such a Ca2+-specific coordination site in the pore explains contradicting data for the relative Ca2+/K+ permeability and strongly suggests that the Ca2+ permeability of SV channels is largely overestimated from relative permeability analyses. This conclusion was further supported by in silico electrophysiological studies showing a remarkable permeation of K+ but not Ca2+ through the open channel.
000901866 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000901866 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000901866 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x2
000901866 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x3
000901866 536__ $$0G:(GEPRIS)267205415$$aDFG project 267205415 - SFB 1208: Identität und Dynamik von Membransystemen - von Molekülen bis zu zellulären Funktionen $$c267205415$$x4
000901866 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901866 7001_ $$0P:(DE-Juel1)187014$$aSchott, Stephan$$b1
000901866 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b2$$eCorresponding author
000901866 7001_ $$00000-0002-2781-0359$$aDreyer, Ingo$$b3$$eCorresponding author
000901866 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms221910345$$gVol. 22, no. 19, p. 10345 -$$n19$$p10345 -$$tInternational journal of molecular sciences$$v22$$x1422-0067$$y2021
000901866 8564_ $$uhttps://juser.fz-juelich.de/record/901866/files/Invoice_MDPI_ijms-1349711_1700.00CHF.pdf
000901866 8564_ $$uhttps://juser.fz-juelich.de/record/901866/files/ijms-22-10345-v2.pdf$$yOpenAccess
000901866 8767_ $$81349711$$92021-09-21$$d2021-11-10$$eAPC$$jStorniert$$z1700CHF / Belegnr. 1200173366
000901866 909CO $$ooai:juser.fz-juelich.de:901866$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000901866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187014$$aForschungszentrum Jülich$$b1$$kFZJ
000901866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b2$$kFZJ
000901866 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000901866 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000901866 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x2
000901866 9141_ $$y2021
000901866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000901866 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000901866 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2019$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901866 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000901866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000901866 920__ $$lyes
000901866 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000901866 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000901866 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000901866 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x3
000901866 980__ $$ajournal
000901866 980__ $$aVDB
000901866 980__ $$aI:(DE-Juel1)JSC-20090406
000901866 980__ $$aI:(DE-Juel1)NIC-20090406
000901866 980__ $$aI:(DE-Juel1)IBI-7-20200312
000901866 980__ $$aI:(DE-Juel1)IBG-4-20200403
000901866 980__ $$aAPC
000901866 980__ $$aUNRESTRICTED
000901866 9801_ $$aAPC
000901866 9801_ $$aFullTexts