000901870 001__ 901870
000901870 005__ 20211130111105.0
000901870 0247_ $$2doi$$a10.1021/acs.jpcc.1c00143
000901870 0247_ $$2ISSN$$a1932-7447
000901870 0247_ $$2ISSN$$a1932-7455
000901870 0247_ $$2Handle$$a2128/29018
000901870 0247_ $$2pmid$$a34093940
000901870 0247_ $$2WOS$$aWOS:000647271300030
000901870 037__ $$aFZJ-2021-03878
000901870 082__ $$a530
000901870 1001_ $$0P:(DE-HGF)0$$aXu, Xufeng$$b0
000901870 245__ $$aAssembly Control at a Low Péclet Number in Ultracentrifugation for Uniformly Sized Nanoparticles
000901870 260__ $$aWashington, DC$$bSoc.$$c2021
000901870 3367_ $$2DRIVER$$aarticle
000901870 3367_ $$2DataCite$$aOutput Types/Journal article
000901870 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636727111_21148
000901870 3367_ $$2BibTeX$$aARTICLE
000901870 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901870 3367_ $$00$$2EndNote$$aJournal Article
000901870 520__ $$aThe intrinsic high diffusion rate of colloids at low Péclet number results in an extremely fast crystallization process and instant formation of colloidal crystals, even at an ultracentrifugal field of extremely high intensity. By introducing a small number of clusters in sedimention, it should be possible to slow down the crystallization process, thus making the assembly order tunable in preparative ultracentrifugation experiments. Here, we used sodium dodecyl sulfate-stabilized polystyrene nanoparticles (with a size dispersity of 1.07) dispersed in a solution of high ionic strength. Sedimentation and assembly of these nanoparticles were done using preparative ultracentrifugation at various angular velocities. The sedimentation process was also analyzed in situ by analytical ultracentrifugation in real time. By creating as low as 3% of clusters into these nearly uniformly sized polystyrene nanoparticle dispersions during the sedimentation process, the superstructure order becomes easily tunable between glassy and crystalline. Theoretical calculations complemented the experiments to explain the mechanism of cluster formation in sedimentation. This work provides a novel methodology to produce superstructures with a tunable packing order for colloids at low Péclet number.
000901870 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000901870 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000901870 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901870 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000901870 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000901870 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000901870 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b1$$ufzj
000901870 7001_ $$00000-0002-1148-0308$$aCölfen, Helmut$$b2$$eCorresponding author
000901870 7001_ $$00000-0002-7163-8429$$ade With, Gijsbertus$$b3$$eCorresponding author
000901870 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.1c00143$$gVol. 125, no. 16, p. 8752 - 8758$$n16$$p8752 - 8758$$tThe journal of physical chemistry <Washington, DC> / C$$v125$$x1932-7455$$y2021
000901870 8564_ $$uhttps://juser.fz-juelich.de/record/901870/files/full%20paper.pdf$$yOpenAccess
000901870 909CO $$ooai:juser.fz-juelich.de:901870$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000901870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b1$$kFZJ
000901870 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000901870 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000901870 9141_ $$y2021
000901870 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000901870 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000901870 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000901870 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2019$$d2021-02-02
000901870 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000901870 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000901870 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000901870 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901870 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000901870 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000901870 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000901870 920__ $$lyes
000901870 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
000901870 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000901870 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2
000901870 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000901870 980__ $$ajournal
000901870 980__ $$aVDB
000901870 980__ $$aUNRESTRICTED
000901870 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000901870 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000901870 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000901870 980__ $$aI:(DE-588b)4597118-3
000901870 9801_ $$aFullTexts