000901871 001__ 901871
000901871 005__ 20211205011627.0
000901871 0247_ $$2doi$$a10.34133/2021/4515164
000901871 0247_ $$2Handle$$a2128/29022
000901871 0247_ $$2pmid$$a33623918
000901871 0247_ $$2WOS$$aWOS:000610827400001
000901871 0247_ $$2altmetric$$aaltmetric:117777872
000901871 037__ $$aFZJ-2021-03879
000901871 082__ $$a600
000901871 1001_ $$0P:(DE-HGF)0$$aLei, Zhouyue$$b0
000901871 245__ $$aHierarchical Network-Augmented Hydroglasses for Broadband Light Management
000901871 260__ $$a[Beijing]$$bChina Association for Science and Technology$$c2021
000901871 3367_ $$2DRIVER$$aarticle
000901871 3367_ $$2DataCite$$aOutput Types/Journal article
000901871 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636727882_21148
000901871 3367_ $$2BibTeX$$aARTICLE
000901871 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901871 3367_ $$00$$2EndNote$$aJournal Article
000901871 520__ $$aLight management is essential for military stealth, optical information communication, and energy-efficient buildings. However, current light management materials face challenges of limited optical modulation range and poor mechanical properties. Herein, we report a locally confined polymerization (LCP) approach to develop hierarchical network-augmented hydroglasses (HNAH) based on poly(methacrylic acid) for broadband light management as well as mechanical enhancement. The dynamic geometry of the networks ranging from nano- to micro-scale enables to manage the light wavelength over three orders of magnitude, from the ultraviolet (UV) to infrared (IR) band, and reversibly switches transmittance in the visible region. A smart hydroglass window is developed with elasticity, outstanding robustness, self-healing, notch resistance, biosafety by blocking UV radiation, and high solar energy shielding efficacy with a temperature drop of 13°C. Compared to current inorganic glasses and Plexiglas, the hydroglass not only is a promising and versatile candidate but also provides novel insights into the molecular and structural design of broadband light management and optimized mechanical properties.
000901871 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000901871 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000901871 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901871 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000901871 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000901871 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000901871 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000901871 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b1$$ufzj
000901871 7001_ $$00000-0001-7235-210X$$aWu, Peiyi$$b2$$eCorresponding author
000901871 773__ $$0PERI:(DE-600)2949955-0$$a10.34133/2021/4515164$$gVol. 2021, p. 1 - 12$$pArticle ID 4515164 $$tResearch$$v2021$$x2639-5274$$y2021
000901871 8564_ $$uhttps://juser.fz-juelich.de/record/901871/files/fullpaper.pdf$$yOpenAccess
000901871 909CO $$ooai:juser.fz-juelich.de:901871$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000901871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b1$$kFZJ
000901871 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000901871 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000901871 9141_ $$y2021
000901871 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000901871 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000901871 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-08-29
000901871 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-29
000901871 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-29
000901871 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000901871 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901871 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-29
000901871 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000901871 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-29
000901871 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000901871 920__ $$lyes
000901871 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
000901871 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000901871 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2
000901871 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000901871 980__ $$ajournal
000901871 980__ $$aVDB
000901871 980__ $$aUNRESTRICTED
000901871 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000901871 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000901871 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000901871 980__ $$aI:(DE-588b)4597118-3
000901871 9801_ $$aFullTexts