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1 Jülich Supercomputing Centre
Forschungszentrum Jülich GmbH
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Abstract. While many ideas and proofs of concept for parallel-in-time
integration methods exists, the number of large-scale, accessible time-
parallel codes is rather small. This is often due to the apparent or subtle
complexity of the algorithms and the many pitfalls awaiting developers of
parallel numerical software. One example of such a time-parallel code is
pySDC, which implements, among others, the parallel full approximation
scheme in space and time (PFASST). Inspired by nonlinear multigrid
ideas, PFASST allows to integrate multiple time-steps simultaneously
using a space-time hierarchy of spectral deferred corrections. In this pa-
per we demonstrate the application of performance analysis tools to the
PFASST implementation pySDC. We trace the path we took for this work,
show examples of how the tools can be applied and explain the sometimes
surprising findings we encountered. Although focusing only on a single
implementation of a particular parallel-in-time integrator, we hope that
our results and in particular the way we obtained them are a blueprint
for other time-parallel codes.

1 Motivation

With million-way concurrency at hand, the efficient use of modern high-per-
formance computing systems has become one of the key challenges in compu-
tational science and engineering. New mathematical concepts and algorithms
are needed to fully exploit these massively parallel architectures. For the nu-
merical solution of time-dependent processes, recent developments in the field
of parallel-in-time integration have opened new ways to overcome both strong
and weak scaling limit of classical, spatial parallelization techniques. In [14],
many of these techniques and their properties are presented, while [32] gives an
overview of applications of parallel-in-time integration. Furthermore, the com-
munity website3 provides a comprehensive list of references. We refer to these

3 https://www.parallel-in-time.org

https://www.parallel-in-time.org
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sources for a detailed overview of time-parallel methods and their applications.
While many ideas, algorithms and proofs of concept exist in this domain, the
number of actual large-scale time-parallel application codes or even stand-alone
parallel-in-time libraries showcasing performance gains is still small. In partic-
ular, codes which can deal with parallelization in time as well as in space are
rare. At the time of this writing, three main, accessible projects targeting this
area are XBraid, a C/C++ time-parallel multigrid solver [26], RIDC, a C++ im-
plementation of the revisionist integral deferred correction method [31], and at
least two different implementations of PFASST, the “parallel full approximation
scheme in space and time” [10]. One major PFASST implementation is written
in Fortran (libpfasst, see [28]), another one in Python (pySDC, see [42]).

When running parallel simulations, benchmarks or just initial tests, one key
question is whether the code actually does what it is supposed to do and/or what
the developer thinks it does. While this may seem obvious to the developer, com-
plex codes (like PFASST implementations) tend to introduce complex bugs. To
avoid these, one may ask for example: How many messages were sent, how many
were received? Is there a wait for each non-blocking communication? Are the
number of solves/evaluations/iterations reasonable? Moreover, even if the work-
flow itself is correct and verified, the developer or user may wonder whether the
code is as fast as it can be: Is the communication actually non-blocking or block-
ing, when it should be? Is the waiting time of the processes as expected? Does
the algorithm spend reasonable time in certain functions or are there inefficient
implementations causing delays? Then, if all runs well, performing comprehen-
sive parameter studies like benchmarking requires a solid workflow management
and it can be quite tedious to keep track of what ran where, when and with what
result. In order to address questions like these, advanced performance analysis
tools can be used.

The performance analysis tools landscape is manifold. Tools range from node-
level analysis tools using hardware counters like LIKWID [44] and PAPI [43]
to tools intended for large-scale, complex applications like Scalasca [16]. There
are tools developed by the hardware vendors, e.g. Intel VTune [34] or NVIDIA
nvprof [5] as well as community driven open source tools and tool-sets like Score-
P [25], TAU [39] or HPCToolkit [1]. Choosing the right tool depends on the task
at hand and of course on the familiarity of the analyst with the available tools.

It is the goal of this paper to present some of these tools and show their ca-
pabilities for performance measurements, workflows and bug detection for time-
parallel codes like pySDC. Although we will, in the interest of brevity, solely focus
on pySDC for this paper, our results and in particular the way we obtained them
with the different tools can serve as a blueprint for many other implementa-
tions of parallel-in-time algorithms. While there are a lot of studies using these
tools for many parallelization strategies, see e.g. [22,19], and application areas,
see e.g. [38,18], their application in the context of parallel-in-time integration
techniques is new. Especially when different parallelization strategies are mixed,
these tools can provide invaluable help. We would like to emphasize that this
paper is not about the actual results of pySDC, PFASST or parallel-in-time inte-
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gration itself (like the application, the parallel speedup or the time-to-solution),
but on the benefits of using performance tools and workflow managers for the
development and application of a parallel-in-time integrator. Thus, this paper is
meant as a community service to showcase what can be done with a few standard
tools from the broad field of HPC performance analysis. One specific challenge
in this regard, however, is the programming language of pySDC. Most tools focus
on more standard HPC languages like Fortran or C/C++. With the new release
of Score-P used for this work, Python codes can now be analyzed as well, as we
will show in this paper.

In the next section we will briefly introduce the PFASST algorithm and
describe its implementation in some detail. While the math behind a method
may not be relevant for performance tools, understanding the algorithms at
least in principle is necessary to give more precise answers to the questions
the method developers may have. Section 3 is concerned with a more or less
brief and high-level description of the performance analysis tools used for this
project. Section 4 describes the endeavor of obtaining reasonable measurements
from their application to pySDC, interpreting the results and learning from them.
Section 5 contains a brief summary and an outlook.

2 A Parallel-in-Time Integrator

In this section we briefly review the collocation problem, being the basis for
all problems the algorithm presented here tries to solve in one way or another.
Then, spectral deferred corrections (SDC, [9]) are introduced, which lead to the
time-parallel integrator PFASST. This section is largely based on [4,40].

2.1 Spectral deferred corrections

For ease of notation we consider a scalar initial value problem on the interval
[t`, t`+1]

ut = f(u), u(t`) = u0,

with u(t), u0, f(u) ∈ R. We rewrite this in Picard formulation as

u(t) = u0 +

∫ t

t`

f(u(s))ds, t ∈ [t`, t`+1].

Introducing M quadrature nodes τ1, ..., τM with t` ≤ τ1 < ... < τM = t`+1, we
can approximate the integrals from t` to these nodes τm using spectral quadra-
ture like Gauss-Radau or Gauss-Lobatto quadrature, such that

um = u0 +∆t

M∑
j=1

qm,jf(uj), m = 1, ...,M,
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where um ≈ u(τm), ∆t = t`+1 − t` and qm,j represent the quadrature weights
for the interval [t`, τm] with

∆t

M∑
j=1

qm,jf(uj) ≈
∫ τm

t`

f(u(s))ds.

We can now combine these M equations into one system of linear or non-linear
equations with

(IM −∆tQf) (u`) = u0 (1)

where u` = (u1, ..., uM )T ≈ (u(τ1), ..., u(τM ))T ∈ RM , u0 = (u0, ..., u0)T ∈ RM ,
Q = (qi,j) ∈ RM×M is the matrix gathering the quadrature weights, IM is the
identity matrix of dimension M and the vector function f is given by f(u) =
(f(u1), ..., f(uM ))T ∈ RM . This system of equations is called the “collocation
problem” for the interval [t`, t`+1] and it is equivalent to a fully implicit Runge-
Kutta method, where the matrix Q contains the entries of the corresponding
Butcher tableau. We note that for f(u) ∈ RN , we need to replace Q by Q⊗ IN .

Using SDC, this problem can be solved iteratively and we follow [20,45,35] to
present SDC as preconditioned Picard iteration for the collocation problem (1).
The standard approach to preconditioning is to define an operator which is easy
to invert but also close to the operator of the system. One very effective option
is the so-called “LU trick”, which uses the LU decomposition of QT to define

Q∆ = UT for QT = LU,

see [45] for details. With this we write

(IM −∆tQ∆f) (uk+1
` ) = u0 +∆t(Q−Q∆)f(uk` ) (2)

or, equivalently,

uk+1
` = u0 +∆tQ∆f(uk+1

` ) +∆t(Q−Q∆)f(uk` ) (3)

and the operator I−∆tQ∆f is then called the SDC preconditioner. Writing (3)
line by line recovers the classical SDC formulation found in [9].

2.2 Parallel full approximation scheme in space and time

We can assemble the collocation problem (1) for multiple time-steps, too. Let

u1, ...,uL be the solution vectors at time-steps 1, ..., L and ~u = (u1, ...,uL)
T

the
full solution vector. We define a matrix H ∈ RM×M such that Hu` provides
the initial value for the ` + 1-th time-step. Note that this initial value has to
be used at all nodes, see the definition of u0 above. The matrix depends on
the collocation nodes and if the last node is the right interval boundary, i.e.
τM = t`+1 as it is the case for Gauss-Radau or Gauss-Lobatto nodes, then it is
simply given by

H = (0, ..., 0, 1)⊗ (1, ..., 1)
T
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Otherwise, H would contain weights for extrapolation or the collocation formula
for the full interval. Note that for f(u) ∈ RN , we again need to replace H by H⊗
IN . With this definition, we can assemble the so-called “composite collocation
problem” for L time-steps as

C(~u) := (ILM − IL ⊗∆tQF −E⊗H) (~u) = ~u0, (4)

with ~u0 = (u0,0, ...,0)
T ∈ RLM , the vector of vector functions ~F (~u) = (f(u1),

...,f(uL))T ∈ RLM and where the matrix E ∈ RL×L has ones on the lower sub-
diagonal and zeros elsewhere, accounting for the transfer of the solution from
one step to another.

For serial time-stepping each step can be solved after another, i.e. SDC it-
erations (now called “sweeps”) are performed until convergence on u1, move to
step 2 via H, do SDC there and so on. In order to introduce parallelism in time,
the “parallel full approximation scheme in space in time” (PFASST) makes use
of a full approximation scheme (FAS) multigrid approach for solving (4). We
present this idea using two levels only, but the algorithm can be easily extended
to multiple levels. First, a parallel solver on the fine level and a serial solver on
the coarse level are defined as

Ppar(~u) := (ILM − IL ⊗∆tQ∆F ) (~u),

Pser(~u) := (ILM − IL ⊗∆tQ∆F −E⊗H) (~u).

Omitting the term E ⊗ H in Ppar decouples the steps, enabling simultaneous
SDC sweeps on each step.

PFASST uses Ppar as smoother on the fine level and Pser as an approximate
solver on the coarse level. Restriction and prolongation operators IHh and IhH
allow to transfer information between the fine level (indicated with h) and the
coarse level (indicated with H). The approximate solution is then used to correct
the solution of the smoother on the finer level. Typically, only two levels are used,
although the method is not restricted to this choice. PFASST in its standard
implementation allows coarsening in the degrees-of-freedom in space (i.e. use
N/2 instead of N unknowns per spatial dimension), a reduced collocation rule
(i.e. use a different Q on the coarse level), a less accurate solver in space (for
solving (2) on each time-step) or even a reduced representation of the problem.
The first two strategies directly influence the definition of the restriction and
prolongation operators.

Since the right-hand side of the ODE can be a non-linear function, a τ -
correction stemming from the FAS is added to the coarse problem. One PFASST
iteration then comprises the following steps:

1. Compute τ -correction as

~τ = CH

(
IHh ~u

k
h

)
− IHh Ch

(
~ukh

)
.

2. Compute ~uk+1
H from

Pser(~u
k+1
H ) = ~u0,H + ~τ + (Pser −CH) (IHh ~u

k
h).
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(a) Original algorithm with overlap as de-
scribed in [10]
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(b) Algorithm as described in [3] and im-
plemented in pySDC

Fig. 1: Two slightly different workflows of PFASST, on the left with (theoreti-
cally) overlapping fine and coarse communication, on the right with multigrid-
like communication.

3. Compute ~u
k+1/2
h from

~u
k+1/2
h = ~ukh + IhH

(
~uk+1
H − IHh ~u

k
h

)
.

4. Compute ~uk+1
h from

Ppar(~u
k+1
h ) = ~u0,h + (Ppar −Ch) (~u

k+1/2
h ).

We note that this “multigrid perspective” [3] does not represent the original idea
of PFASST as described in [29,10]. There, PFASST is presented as a coupling
of SDC with the time-parallel method Parareal, augmented by the τ -correction
which allows to represent fine-level information on the coarse level.

While conceptually the same, there is a key difference in the implementa-
tion of these two representations of PFASST. The workflow of the algorithm
is depicted in Figure 1, showing the original approach in 1a and the multigrid
perspective in 1b. They differ in the way the fine level communication is done.
As described in [11], under certain conditions it is possible to introduce overlap
of sending/receiving updated values on the fine level and the coarse level com-
putation. More precisely, the “window” for finishing fine level communication
is as long as two coarse level sweeps: one from the current iteration, one from
the predictor which already introduces a lag of later processors (see Figure 1a).
In contrast, the multigrid perspective requires updated fine level values when-
ever the term Ch(~ukh) has to be evaluated. This is the case in step 1 and step
2 of the algorithm as presented before. Note that due to the serial nature of

step 3, the evaluation of CH(IHh ~u
k+1/2
h ) already uses the most recent values on

the coarse level in both approaches. Therefore, overlap of communication and
computation is somewhat limited: only during the time-span of a single coarse
level sweep (introduced by the predictor) the fine level communication has to
finish in order to avoid waiting times (see Figure 1b). However, the advantage
of the multigrid perspective, besides its relative simplicity and ease of notation,
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is that multiple sweeps on the fine level for speeding up convergence, as shown
in [4], are now effectively possible. This is one of the reasons this implementation
strategy has been chosen for pySDC, while the original Fortran implementation
libpfasst uses the classical workflow. Yet, while the multigrid perspective may
simplify the formal description of the PFASST algorithm, the implementation
of PFASST can still be quite challenging.

2.3 pySDC

The purpose of the Python code pySDC is to provide a framework for testing,
evaluating and applying different variants of SDC and PFASST without worrying
too much about implementation details, communication structures or lower-level
language peculiarities. Users can simply set up an ODE system and run standard
versions of SDC or PFASST spending close to no thoughts on the internal struc-
ture. In particular, it provides an easy starting point to see whether collocation
methods, SDC, and parallel-in-time integration with PFASST are useful for the
problem under consideration. Developers, on the other hand, can build on the
existing infrastructure to implement new iterative methods or to improve exist-
ing methods by overriding any component of pySDC, from the main controller
and the SDC sweeps to the transfer routines or the way the hierarchy is created.
pySDC’s main features are [40]:

– available implementations of many variants of SDC, MLSDC and PFASST,

– many ordinary and partial differential equations already pre-implemented,

– tutorials to lower the bar for new users and developers,

– coupling to FEniCS and PETSc, including spatial parallelism for the latter

– automatic testing of new releases, including results of previous publications

– full compatibility with Python 3.6+, runs on desktops and HPC machines

The main website for pySDC4 provides all relevant information, including links
to the code repository on Github, the documentation as well as test coverage
reports. pySDC is also described in much more detail in [40].

The algorithms within pySDC are implemented using two “controller” classes.
One emulates parallelism in time, while the other one uses mpi4py [7] for actual
parallelization in the time dimension with the Message Passing Interface (MPI).
Both can run the same algorithms and yield the same results, but while the first
one is primarily used for theoretical purposes and debugging, the latter makes
actual performance tests and time-parallel applications possible.

We will use the MPI-based controller for this paper in order to address the
questions posed at the beginning. To do that, a number of HPC tools are available
which helps users and developers of HPC software to evaluate the performance
of their codes and to speed up their workflows.

4 https://www.parallel-in-time.org/pySDC

https://www.parallel-in-time.org/pySDC
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Fig. 2: Performance Engineering Workflow

3 Performance Analysis Tools

Performance analysis plays a crucial part in the development process of an HPC
application. It usually starts with simply timing the computational kernels to
see where the time is spent. To access more information and to determine tuning
potential, more sophisticated tools are required. The typical performance engi-
neering workflow when using performance analysis tools is an iterative process
as depicted in Figure 2.

First, the application needs to be prepared and some hooks to the mea-
surement system need to be added. These can be debug symbols, compiler in-
strumentation or even code changes by the user. Then, during execution of the
application, performance data is collected and, if necessary, aggregated. The
analysis tools then calculate performance metrics to pinpoint performance prob-
lems to the developer. Finally, the hardest part: the developer has to modify the
application to eliminate or at least reduce the performance problems found by
the tools, ideally without introducing new ones. Unfortunately, tools can only
provide little help in this step.

Several performance analysis tools exist, for all kinds of measurement at all
possible scales, from a desktop computer to the largest supercomputers in the
world. We distinguish two major measurement techniques with different levels of
accuracy and overhead – “profiling”, which aggregates the performance metrics
at runtime and presents statistical results, e.g. how often a function was called
and how much time was spend there, and “event-based tracing”, where each
event of interest, like function enter/exit, messages sent/ received etc. are stored
together with a timestamp. Tracing conserves temporal and spatial relationships
of events and is the more general measurement technique, as a profile can always
be generated from a trace. The main disadvantage of tracing is that trace files
can quickly become extremely large (in the order of terabytes) when collecting
every event. So usually the first step is a profile to determine the hot-spot of the
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application, which then is analyzed in detail using tracing to keep trace-size and
overhead manageable.

However, performance analysis tools cannot only be used to identify opti-
mization potential but also to assess the execution of the application on a given
system with a specific tool-chain (compiler, MPI library, etc.), i.e. to answer the
question “Is my application doing what I think it is doing?”. More often than
not the answer to that question is “No”, as it was in the case we present in this
work. Tools can pinpoint the issues and help to identify possible solutions.

For our analysis we used the tools of the Score-P ecosystem, which are pre-
sented in this section. A similar analysis is possible with other tools as well, e.g.
with TAU [39], Paraver [33], or Intels VTune [34].

3.1 Score-P and the Score-P ecosystem

The Score-P measurement infrastructure [25] is an open source, highly scalable
and easy-to-use tool suite for profiling, event tracing, and online analysis of HPC
applications. It is a community project to replace the measurement systems
of several performance analysis tools and to provide common data formats to
improve interoperability between different analysis tools built on top of Score-P.
Figure 3 shows a schematic overview of the Score-P ecosystem. Most common
HPC programming paradigms are supported by Score-P: MPI (via the PMPI
interface), OpenMP (via OPARI2 or the OpenMP tools interface (OMPT) [13])
as well as GPU programming with CUDA, OpenACC or OpenCL. Score-P offers
three ways to measure application events:

1. compiler instrumentation, where compiler interfaces are used to insert calls
to the measurement system at each function enter and exit,

2. a user instrumentation API, that enables the application developer to mark
specific regions, e.g. kernels, functions or even loops, and

3. a sampling interface which records the state of the program at specific in-
tervals.

All this data is handled in the Score-P measurement core where it can be enriched
with hardware counter information from PAPI [43], perf or rusage. Further,
Score-P provides a counter plugin interface that enables the user to define its own
metric sources. The Score-P measurement infrastructure supports two modes of
operation, it can generate event traces in the OTF2 format [12] and aggregated
profiles in the CUBE4 format [36].

Usage of Score-P is quite straightforward – the compile and link command
have to be prepended by scorep, e.g. mpicc app.c becomes scorep mpicc

app.c. However, Score-P can be extensively configured via environment vari-
ables, so that Score-P can be used in all analysis steps from a simple call-path
profile to a sophisticated tracing experiment enriched with hardware counter in-
formation. Listing 3 in Section 4.2 will show an example job script where several
Score-P options are used.
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Fig. 3: Overview of the Score-P ecosystem. The green box represents the mea-
surement infrastructure with the various ways of data acquisition. This data is
processed by the Score-P measurement infrastructure and stored either aggre-
gated in the CUBE4 profile format or as an event trace in the OTF2 format. On
top are the various analysis tools working with these common data formats.

Score-P Python bindings Traditionally the main programming languages for
HPC application development have been C, C++ and Fortran. However, with
the advent of high-performance Python libraries in the wake of the rise of AI
and deep learning, pure Python HPC applications are now a feasible possibil-
ity, as pySDC shows. Python has two built-in Performance Analysis Tools, called
profile and cProfile. Though they allow profiling Python code, they do not
support as detailed application analyses as Score-P does. Therefore, the Score-
P Python bindings have been introduced [17], which allow to profile and trace
Python applications using Score-P. This technique can analyze all different kinds
of applications that use python, including machine learning workflows. This par-
ticular aspect will be described in more detail in another paper.

The bindings use the Python built-in infrastructure that generates events for
each enter and exit of a function. It is the same infrastructure that is used by
the profile tool. As the bindings utilize Score-P itself, the different paradigms
listed above can be combined and analyzed even if they are used from within a
Python application.
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Especially the MPI support of Score-P is of interest, as pySDC uses mpi4py

for parallelization in time. Note that mpi4py uses matched probes and receives
(MPI Mprobe and MPI Mrecv), which ensures thread safety. However, Score-P did
not have support for Mprobe/Mrecv in the released version, so we had to switch to
a development version of Score-P, where the support was added for this project.
Full support for matched communication is expected in an upcoming release of
Score-P.

Moreover, as not each function might be of interest for the analysis of an
application, it is possible to manually enable and disable the instrumentation
or to instrument regions manually, see Listing 4 in Section 4.2 for an example.
These techniques can be used to control the detail of recorded information and
therefore to control the measurement overhead.

3.2 Cube

Cube is the performance report explorer for Score-P as well as for Scalasca (see
below). The CUBE data model is a three-dimensional performance space con-
sisting of the dimensions (i) performance metric, (ii) call-path, and (iii) system
location. Each dimension is represented in the GUI as a tree and shown in three
coupled tree browsers, i.e. upon selection of one tree item the other trees are
updated. Non-leaf nodes of each tree can be collapsed or expanded to achieve
the desired level of granularity. We refer to Figure 12 for the graphical user
interface of Cube. The metrics that are recorded by default contain the time
per call, the number of calls to each function and the bytes transferred in MPI
calls. Additional metrics depend on the measurement configuration. The Cube-
GUI is highly customizable and extendable. It provides a plugin interface to add
new analysis capabilities [23] and an integrated domain-specific language called
CubePL to manipulate CUBE metrics [37], enabling completely new kinds of
analysis.

3.3 Scalasca

Scalasca [16] is an automatic analyzer of OTF2 traces generated by Score-P. The
idea of Scalasca, as outlined in Figure 4, is to perform an automatic search for
patterns indicating inefficient behavior. The whole low-level trace data is consid-
ered and only a high-level result in the form of a CUBE report is generated. This
report has the same structure as a Score-P profile report, but contains additional
metrics for the patterns that Scalasca detected. Scalasca performs three major
tasks: (i) an identification of wait states, like the Late Receiver pattern shown
in Figure 5 and their respective root-causes [47], (ii) a classification of the be-
haviour and a quantification of its significance and (iii) a scalable identification
of the critical path of the execution [2]. As Scalasca is primarily targeted at large-
scale applications, the analyzer is a parallel program itself, typically running on
the same resources as the original application. This enables a unique scalabil-
ity to the largest machines available [15]. Scalasca offers convenience commands
to start the analysis right after measurement in the same job. Unfortunately,
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Fig. 4: The Scalasca approach for a scalable parallel trace analysis. The entire
trace date is analyzed and only a high-level result is stored in the form of a Cube
report.

Fig. 5: Example of the Late Receiver pattern as detected by Scalasca. Process 0
post the Send before process 1 posts the Recv. The red arrow indicates waiting
time and thus a performance inefficiency.

this does not work with Python yet, in this case the analyzer has to be started
separately, see line 21 in Listing 3.

3.4 Vampir

Complementary to the automatic trace analysis with Scalasca - and often more
intuitive to the user - is a manual analysis with Vampir. Vampir [24] is a powerful
trace viewer for OTF2 trace files. In contrast to traditional profile viewers, which
only visualize the call hierarchy and function runtimes, Vampir allows the inves-
tigation of the whole application flow. Any metrics collected by Score-P, from
PAPI or counter plugins, can be analyzed across processes and time with either
a timeline or as a heatmap in the Performance Radar. Recently added was the
functionality to visualize I/O-events like reads and writes from and to the hard
drive [30]. It is possible to zoom into any level of detail, which automatically
updated all views and shows the information from the selected part of the trace.
Besides opening an OTF2 file directly, Vampir can connect to VampirServer,
which uses multiple MPI processes on the remote system to load the traces.
This approach improves scalability and removes the necessity to copy the trace
file. VampirServer allows the visualisation of traces from large-scale application
runs with multiple thousand processes. The size of such traces is typically in the
order of several Gigabyte.
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3.5 JUBE

Managing complex workflows of HPC applications can be a complex and error-
prone task and often results in significant amounts of manual work. Applica-
tion parameters may change at several steps in these workflows. In addition,
reproducibility of program results is very important but hard to handle when
parametrizations change multiple times during the development process. Usu-
ally application-specific, hardly documented script based solutions are used to
accomplish these tasks.

In contrast, the JUBE benchmarking environment provides a lightweight,
command line based, configurable framework to specify, run and monitor the
parameter handling and the general workflow execution. This allows a faster
integration process and easier adoption of necessary workflow mechanics [27].

Parameters are the central JUBE elements and can be used to configure the
application, to replace parts of the source code or to be even used within other
parameters. Also the workflow execution itself is managed through the parameter
setup by automatically looping through all available parameter combinations in
combination with a dependency driven step structure. For reproducibility, JUBE
also takes care of the directory management to provide a sandbox space for each
execution. Finally, JUBE allows to extract relevant patterns from the application
output to create a single result overview to combine the input parametrization
and the extracted output results.

To port an application workflow into the JUBE framework, its basic com-
pilation (if requested) and execution command steps have to be listed within
a JUBE configuration file. To allow the sandbox directory handling, all neces-
sary external files (source codes, input data and configuration files) have to be
listed as well. On top, the user can add the specific parametrization by intro-
ducing named key/value pairs. These pairs can either provide a fixed one to
one key/value mapping or, in case of a parameter study, multiple values can
be mapped to the same key. In such a case JUBE starts to spawn a decision
tree, by using every available value combination for a separate program step ex-
ecution. Figure 6 shows a simple graph example where three different program
steps (pre-processing, compile and execution) are executed in a specific order and
three different parameters (const, p1 and p2) are defined. Once the parameters
are defined, they can be used to substitute parts of the original source files or to
directly define certain options within the individual program configuration list.
Typically, an application-specific template file is designed to be filled by JUBE
parameters afterwards. Once the templates and the JUBE configuration file is
in place, the JUBE command line tools are used to start the overall workflow
execution. JUBE automatically spawns the necessary parameter tree, creates the
sandbox directories and executes the given commands multiple times based on
the parameter configuration.

To take care of the typical HPC environment, JUBE also helps with the job
submission part by providing a set of job scheduler-specific script templates. This
is especially helpful for scaling tests by easily varying the amount of compute
devices using a single parameter within the JUBE configuration file. JUBE itself



14 Robert Speck, Michael Knobloch, Sebastian Lührs, and Andreas Gocht

Fig. 6: JUBE workflow example

is not aware of the different types of HPC schedulers, therefore it uses a simple
marker file mechanic to recognize if a specific job was finally executed. In Sect. 4.1
we show detailed examples for a configuration file and a jobscript template.

The generic approach of JUBE allows it to easily replace any manual work-
flow. For example, to use JUBE for an automated performance analysis, using
the highlighted performance tools, the necessary Score-P and Scalasca command
line options can be directly stored within a parameter, which can then be used
during compilation and job submission. After the job execution, even the per-
formance metric extraction can be automated, by converting the profiling data
files within an additional performance tool specific post-processing step into a
JUBE parsable output format. This approach allows to easily rerun a specific
analysis or even combine performance analysis together with a scaling run, to
determine individual metric degradation towards scaling capabilities.

4 Results and Lessons Learned

In the following we consider the two-dimensional Allen-Cahn equation

ut = ∆u− 2

ε2
u(1− u)(1− 2u) (5)

u(x, 0) =

L∑
i=1

L∑
j=1

ui,j(x)
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(b) System at time-step 24

Fig. 7: Evolution of the Allen-Cahn problem used for this analysis.

with periodic boundary conditions, scaling parameter ε > 0 and x ∈ RN , N ∈ N.
Note that as a slight abuse of notation u(x, 0) is the initial condition for the
initial value problem, whereas in Sect. 2.1 u0 represents the initial value for the
individual time slabs. The domain in space [−L/2, L/2]2, L ∈ N, consists of L2

patches of size 1× 1 and in each patch we start with a circle

ui,j(x) =
1

2

(
1 + tanh

(
Ri,j − ‖x‖√

2ε

))
,

of initial radius Ri,j > 0 which is chosen randomly between 0.5ε and 3ε for each
patch. For L = 1 and this set of parameters, this is precisely the well-known
shrinking circle problem, where the dynamics is known and which can be used to
verify the simulation [46]. By increasing the parameter L, the simulation domain
can be increased without changing the evolution of the simulation fundamentally.
For the test shown here we use L = 4, finite differences in space with N = 576
and ε = 0.04, so that initially about 6 points resolve the interfaces, which have
a width of about 7ε. We furthermore use M = 3 Gauss-Radau nodes and ∆t =
0.001 < ε2 for the collocation problem and stop the simulation after 24 time-
steps at T = 0.024. We split the right-hand side of (5) and treat the linear
diffusion part implicitly using the LU trick [45] and the nonlinear reaction part
explicitly using the explicit Euler preconditioner. This has been shown to be
the fastest SDC variant in [40] and allows us to use the mpi4py-fft library [8]
for solving the implicit system, for applying the Laplacian and for transferring
data between coarse and fine levels in space. The iterations are stopped when a
residual tolerance of 10−8 is reached. For coarsening, only 96 points in space were
used on the coarse level and, following [4], 3 sweeps are done on the fine level
and 1 on the coarse one. All tests were run on the JURECA cluster at JSC [21]
using Python 3.6.8 with the Intel compiler and (unless otherwise stated) Intel
MPI. The code can be found in the projects/Performance folder of pySDC [41].
Figure 7 shows the evolution of the system with L = 4 from the initial condition
in 7a to the 24th time-step in 7b.
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Fig. 8: Time vs. number of cores in space and time.

4.1 Scalability test with JUBE

In Figure 8 the scalability of the code in space and time is shown. While spatial
parallelization stagnates at about 24 cores, adding temporal parallelism with
PFASST allows to use 12 times more processors for an additional speedup of
about 4. Note that using even more cores in time increases the runtime again
due to a much higher number of iterations. Also, using more than 48 cores in
space is not possible due to the size of the problem. We do not consider larger-
scale problems and parallelization here, since a detailed a performance analysis in
this case is currently work in progress together with the EU Centre of Excellence
“Performance Optimisation and Productivity” (POP CoE, see [6] for details).

The runs were set up and executed using JUBE. The corresponding XML file
is shown in Listings 1 and 2. The first listing contains the input and operations
part of the file and consists of four blocks:

1. the parameter set (lines 6-16),
2. the rules for substituting the parameter values in the template to build the

executable (lines 18-27),
3. the list of files to copy over to the run directory (lines 29-33),
4. and the operations part, where the shell command for submitting the job is

given (lines 35-42).

While the last two are rather straightforward and do not require too much of
the user’s attention, the first two are the ones where the simulation and run
parameters find their way into the actual execution. In lines 8-12, the number of
compute nodes and the number of tasks (or cores) are set up. Using the python
mode in lines 9 and 11, the variable i from line 8 is taken to step simultane-
ously through the number of nodes and tasks. Without this, for each number of
nodes, all number of tasks would be used in separate runs, i.e. instead of 10 runs,



Using performance analysis tools for a parallel-in-time integrator 17

1 <?xml version="1.0" encoding="UTF-8"?>

2 <jube>

3 <benchmark name="pySDC AC scaling test" outpath="bench_run_SPxTP">

4 <comment>Scaling test with pySDC</comment>

5

6 <!-- Parameters -->

7 <parameterset name="param_set">

8 <parameter name="i">0, 1, 2, 3, 4, 5, 6, 7, 8, 9</parameter>

9 <parameter name="nnodes" mode="python" type="int">

10 [1, 1, 1, 1, 1, 1, 2, 4, 6, 12][$i]</parameter>

11 <parameter name="ntasks" mode="python" type="int">

12 [1, 2, 4, 6, 12, 24, 24, 24, 24, 24][$i]</parameter>

13 <parameter name="space_size" mode="python" type="int">

14 $ntasks</parameter>

15 <parameter name="mpi" type="str">intel, parastation</parameter>

16 </parameterset>

17

18 <!-- Substitute -->

19 <substituteset name="substitute">

20 <!-- Substitute files -->

21 <iofile in="run_pySDC_AC.tmpl" out="run_pySDC_AC.exe" />

22 <!-- Substitute commands -->

23 <sub source="#NNODES#" dest="$nnodes" />

24 <sub source="#NTASKS#" dest="$ntasks" />

25 <sub source="#SPACE_SIZE#" dest="$space_size" />

26 <sub source="#MPI#" dest="$mpi" />

27 </substituteset>

28

29 <!-- Files -->

30 <fileset name="files">

31 <copy>run_pySDC_AC.tmpl</copy>

32 <copy>run_benchmark.py</copy>

33 </fileset>

34

35 <!-- Operation -->

36 <step name="sub_step">

37 <use>param_set</use> <!-- use existing parameterset -->

38 <use>files</use> <!-- use existing fileset -->

39 <use>substitute</use> <!-- use existing substituteset -->

40 <!-- shell command -->

41 <do done_file="ready">sbatch run_pySDC_AC.exe</do>

42 </step>

43

44 ...

Listing 1: XML input file for JUBE running space-parallel and space-and-time-
parallel runs (part 1, input and operations).
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1 ...

2

3 <!-- Regex pattern -->

4 <patternset name="pattern">

5 <pattern name="timing_pat" type="float">

6 Time to solution: $jube_pat_fp sec.</pattern>

7 <pattern name="niter_pat" type="float">

8 Mean number of iterations: $jube_pat_fp</pattern>

9 </patternset>

10

11 <!-- Analyze -->

12 <analyser name="analyze">

13 <use>pattern</use> <!-- use existing patternset -->

14 <analyse step="sub_step">

15 <file>run.out</file> <!-- file which should be scanned -->

16 </analyse>

17 </analyser>

18

19 <!-- Create result table -->

20 <result>

21 <use>analyze</use> <!-- use existing analyser -->

22 <table name="result" style="pretty" sort="space_size">

23 <column>nnodes</column>

24 <column>ntasks</column>

25 <column>space_size</column>

26 <column>mpi</column>

27 <column>timing_pat</column>

28 <column>niter_pat</column>

29 </table>

30 </result>

31

32 </benchmark>

33 </jube>

Listing 2: XML input file for JUBE running space-parallel and space-and-time-
parallel runs (part 2, output and analysis).
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we would end up with 100 runs, most of them irrelevant. Then, in lines 13-14,
the simulation parameter space size is defined as being equal to the number
of tasks. This specifies the number of cores for the spatial parallelization. In
line 15, two different MPI versions are requested, where the parameter mpi is
then handled appropriately in the jobscript. For each combination of these pa-
rameters, JUBE creates a separate directory with all necessary files and folders.
The template jobscript run pySDC AC.tmpl is replaced by an actual jobscript
run pySDC AC.exe, see line 21, with all parameters in place. An example of a
template jobscript can be found in Listing 3.

The second listing 2 continues the XML file with the output and analysis
blocks. We have:

1. the pattern block (lines 3-9), which will be used to extract data from the
output files of the simulation,

2. the analyzer (lines 11-17), which simply applies the pattern to the output
file,

3. and the result block (lines 19-30) to create a “pretty” table with the results,
based on the parameters and the extracted results.

Using a simple Python script, this table can be read in again and processed into
Figure 8. With JUBE, this workflow can be completely automated using only
a few configuration files and a post-processing script. All relevant configuration
files can be found in the project folder.

4.2 Performance analysis with Score-P, Scalasca and Vampir

Performance analysis of a parallel application is not an easy task in general
and with non-traditional HPC applications in particular. Python applications
are still very rare in the HPC landscape and performance analysis tools (and
performance analysts for that matter) are often not yet fully prepared for this
scenario. In this section we present the challenges we faced and the solutions we
found to show what tools can do.

We also would like to encourage other application developers to seek assis-
tance from the tool developers and their system administrators when obstacles
are encountered in order to get reasonable and satisfactory results.

First measurement attempts The first obstacle we encountered was that the
Score-P Python bindings did not build for the tool-chain of Intel compilers and
IntelMPI due to an issue with the Intel compiler installation on JURECA. We
thus switched to GNU compilers and ParaStationMPI5. Using that we were able
to obtain a first analysis result.

The workflow to get these results is as follows: After setting up the runs with
JUBE XML files as described above, the job is submitted via JUBE using the
jobscript generated from the template.

5 https://www.par-tec.com/products/parastation-mpi.html

https://www.par-tec.com/products/parastation-mpi.html
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1 #!/bin/bash -x

2 #SBATCH --nodes=#NNODES#

3 #SBATCH --ntasks-per-node=#NTASKS#

4 #SBATCH --output=run.out

5 #SBATCH --error=run.err

6 #SBATCH --time=00:05:00

7 #SBATCH --partition=batch

8

9 export MPI=#MPI#

10

11 if [ "$MPI" = "intel" ];

12 ... # logic to distiguish MPI libraries

13 fi

14

15 export SCOREP_EXPERIMENT_DIRECTORY=data/scorep-$MPI

16 export SCOREP_PROFILING_MAX_CALLPATH_DEPTH=90

17 export SCOREP_ENABLE_TRACING=1

18 export SCOREP_METRIC_PAPI=PAPI_TOT_INS

19

20 srun python -m scorep --mpp=mpi run_benchmark.py -n #SPACE_SIZE#

21 srun scout.mpi --time-correct $SCOREP_EXPERIMENT_DIRECTORY/traces.otf2

22 touch ready

Listing 3: Jobscript template to run the simulation with profiling and tracing
enabled.

Listing 3 shows such a template, where all variables of the form #NAME#

will be replaced by actual values for the specific run. Lines 2-7 provide the
allocation and job information for the Slurm Workload Manager. In lines 9-13,
the distinction between different MPI libraries is implemented, using different
modules and virtual Python environments (not shown here). Lines 15-18 define
flags for the Score-P infrastructure, e.g. tracing is enabled (line 17). Then, line 20
contains the run command, where the Score-P infrastructure is passed using the
-m switch. This generates both a profile report (profiling is enabled by default)
for an analysis with CUBE and OTF2 trace files, which can be analyzed manually
with Vampir or automatically with Scalasca. The Scalasca trace analyzer is called
on line 21. As pySDC is a pure MPI application, scout.mpi is used here (there
is also a scout.omp for OpenMP and a scout.hyb for hybrid programs). Note
that tracing is enabled manually here, but could be part of the parameter input
as described in Sect. 3.5. Finally, line 22 marks this particular run as completed
for JUBE. The resulting files can then be read by tools like Vampir and CUBE.

Using this setup we were able to get a first usable measurement. We used
filtering and Score-P’s manual instrumentation API to mark the interesting parts
of the application. In Listing 4, a mock-up of a PFASST implementation is
shown. Here, after importing the Python module scorep.user, separate regions
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1 from mpi4py import MPI

2 from pySDC.core.Controller import controller

3

4 import scorep.user as spu

5

6 ...

7

8 def run_pfasst(*args, **kwargs):

9 ...

10

11 while not done:

12 ...

13 name = f'REGION -- IT_FINE -- {my_rank}'

14 spu.region_begin(name)

15 controller.do_fine_sweep()

16 spu.region_end(name)

17 ...

18 name = f'REGION -- IT_DOWN -- {my_rank}'

19 spu.region_begin(name)

20 controller.transfer_down()

21 spu.region_end(name)

22 ...

23 name = f'REGION -- IT_COARSE -- {my_rank}'

24 spu.region_begin(name)

25 controller.do_coarse_sweep()

26 spu.region_end(name)

27 ...

28 name = f'REGION -- IT_UP -- {my_rank}'

29 spu.region_begin(name)

30 controller.transfer_up()

31 spu.region_end(name)

32 ...

33 name = f'REGION -- IT_CHECK -- {my_rank}'

34 spu.region_begin(name)

35 controller.check_convergence()

36 spu.region_end(name)

37 ...

38

39 ...

40

41 ...

Listing 4: Pseudo code of a PFASST implementation using Score-P regions
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Fig. 9: Vampir visualization: user-defined regions, only a single iteration (ParaS-
tation MPI, 4 processes in time, 1 in space).

can be defined using region start and region end, see e.g. lines 14 and 16.
This information will then be available e.g. for filtering in Vampir.

Analysis then showed that the algorithm outlined in Figure 1b worked as
expected, at least in principle. This can be seen in Figure 9: the bottom part
shows exactly a transposed version of the original communication and workflow
structure as expected from Figure 1b. The middle part shows the amount of
time spend in the different regions: the vast majority of the computation time
(70 %) is spent in the fine sweep, and only about 3 % in the coarse sweep.

Another, more high-level overview of the parallel performance can be gained
with the Advisor plugin of Cube [23]. This prints the efficiency metrics developed
in the POP project6 for the entire execution or an arbitrary phase of the applica-
tion. Figure 10a shows a screenshot of the Advisor result for the computational
part of pySDC, i.e. omitting initialization and finalization.

The main value to look for is “Parallel Efficiency”, which reveals the inef-
ficiency in splitting computation over processes and then communicating data
between processes. In this case the “Parallel Efficiency”, which is defined as the
product of “Load Balance” and “Communication Efficiency”, is 79 %, which is
worse than what we expected for this small test case. We know from Sect. 2.2
that due to the sequential coarse level and the predictor, PFASST runs will
always show slight load imbalances, so the “Load Balance” value of 89 % is
understood.

However, the “Communication Efficiency” of 88 % is way below our expec-
tations. A “Serialisation Efficiency” of 98 % indicates that there is hardly any
waiting time. The “Transfer Efficiency” of 90 % means we lose significant time
due to data transfers. This was not expected so we assumed either an issue with
the implementation of the algorithm or the system environment. A Scalasca
analysis showed that the slight serialisation inefficiency originates from a “Late
Receiver pattern” (see Figure 5) in the fine sweep phase and a “Late Broadcast”

6 https://pop-coe.eu/node/69

https://pop-coe.eu/node/69
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after each time step, but did not reveal the reason for the loss in transfer effi-
ciency. A closer look with Vampir at just a single iteration, as shown in Figure 9,
finally reveals the issue.

The implementation of pySDC uses non-blocking MPI communication in order
to overlap computation and communication. However, Figure 9 clearly shows
that this does not work as expected.

In the time of the analysis of the ParaStationMPI runs there was an update
of the JURECA software environment which finally enabled the support of the
Score-P Python wrappers for the Intel compilers and IntelMPI. So we performed
the same analysis again for this constellation, the one we originally intended
to analyze anyway. Surprisingly, the results looked much better now. The Cube
Advisor analysis now showed nearly perfect Transfer Efficiency and subsequently
a much improved Parallel Efficiency, see Figure 10b.

Vampir further confirms a very good overlap of computation and communi-
cation, the way the implementation intended it to be, see Figure 11.

Eye for the detail Thus, the natural question to ask is where these differences
between the exact same code running on two different tool-chains come from.
Further investigation showed that the installation of ParaStationMPI provided
on JURECA does not provide an MPI progress thread, i.e. MPI communica-
tion cannot be performed asynchronously and thus overlapping computation
and communication is not possible. IntelMPI on the other hand always uses a
progress thread if not explicitly disabled via an environment variable. With a
newly installed test version of ParaStationMPI, where an MPI progress thread
has been enabled, the overlap of computation and communication is possible
there, too. We then see an similar performance of pySDC using the new ParaS-
tationMPI and IntelMPI.

Even though the overlap problem does not seem to be that much of an issue
for this small test case, where just 8% efficiency could be gained, we want to
emphasize that these little issues can become severe ones when scaling up. Fig-
ure 12 shows the average time per call of the fine sweep, as calculated by CUBE.
In the Intel case with overlap we see that the fine sweep time is very balanced
across the processes (Figure 12b). In the ParaStationMPI case we see that the
fine sweep time increases with the process number (Figure 12a). This problem
will likely become worse when the problem size is increased, thus limiting the
maximum number of processes that can be utilized.

The scaling tests as well as the performance analysis made for this work
are rather small compared to what joined space and time parallelism can do.
The difference when using space-parallel solvers can be quite substantial for the
analysis ranging from larger datasets for the analysis and visualization to more
complex communication patterns. In addition, the issues experienced can differ,
as we already see for the test case at hand. In Figure 13, we now use 2 processes
in space and 4 in time. There is still unnecessary waiting time, but its impact is
much smaller. This is due to the fact that progress of MPI calls does not depend
on the MPI communicator, i.e. for each application of the space-parallel FFT
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(a) Cube Advisor showing the POP metrics for pySDC with ParaStationMPI.

(b) Cube Advisor showing the POP metrics for pySDC with IntelMPI.

Fig. 10: Cube Advisor showing the POP metrics for pySDC
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Fig. 11: Vampir visualization: user-defined regions, only a single iteration (Intel
MPI, 4 processes in time, 1 in space).

solver progress does happen even in the time-communicator. A more thorough
and in-depth analysis of large-scale runs is currently under way together with
the POP CoE and we will report on the outcome of this in a future publication.

5 Conclusion and Outlook

In this paper we performed and analyzed parallel runs of the PFASST implemen-
tation pySDC using the performance tools Score-P, CUBE, Scalasca and Vampir
as well as the benchmarking environment JUBE. While the implementation com-
plexity of a time-parallel method may vary, with standard Parareal being on one
side of the spectrum and methods like PFASST on the other, it is crucial to
check and analyze the actual performance of the code. This is particularly true
for most time-parallel methods with their theoretically grounded low parallel
efficiency, since here problems in the communication can easily be mistaken for
method-related shortcomings.

As we have shown, the performance analysis tools in the Score-P ecosystem
cannot only be used to identify tuning potential but also allow to easily check
for bugs and unexpected behavior, without the need to do “print”-debugging.
While methods like Parareal may be straightforward to implement, PFASST is
not, in particular due to many edge cases which the code needs to take care of.
For example, in the standard PFASST implementation the residual is checked
locally for each time-step individually, so that a process working on a later time-
step could, erroneously, decide to stop although the iterations on previous time-
steps still run. Vice versa, when previous time-steps did converge, the processes
dealing with later ones should not expect to receive new data. Depending on
the implementation, those cases could lead to deadlocks (the “good” case) or to
unexpected results (the “bad” case), e.g. when one-sided communication is used,
or other unwanted behavior. Many of these issues can be checked by looking at
the gathered data after an instrumented run. This does not, however, replace a
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(a) Cube screenshot showing the average time per call of the fine sweep for ParaSta-
tionMPI. Time increases with process number.

(b) Cube screenshot showing the average time per call of the fine sweep for IntelMPI.
Time is well balanced across the processes.

Fig. 12: Cube screenshots showing the average time per call of the fine sweep
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Fig. 13: Vampir visualization: user-defined regions, only a single iteration (ParaS-
tation MPI, 4 processes in time, 2 in space)

careful design of the code, testing, benchmarking, verification and, sometimes,
rethinking.

We saw for pySDC that already the choice of the MPI implementation can
influence the performance quite severely, let alone the unexpected deviation from
the intended workflow of the method. Performance tools as the ones presented
here help to verify (or falsify) that the implementation of an algorithm actually
does what the developers thinks it does. While there is a lot of documentation
on these tools available, it is extremely helpful and productive to get in touch
with the core developers, either directly or by attending one of the tutorials e.g.
provided by the VI-HPS through the Tuning Workshop series7. This way, many
of the pitfalls and sources of frustration can be avoided and the full potential of
these tools becomes visible.

In order to set up experiments using parallel codes in a structured way, be it
for performance analysis, parameter studies or scaling tests, tools like JUBE can
be used to ease the management of submission, monitoring and post-processing
of the jobs. Besides parameters for the model, the methods in space and time, the
iteration and so on, the application of time-parallel methods in combination with
spatial parallelism adds another level of complexity, which becomes manageable
with tools like JUBE.
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