%0 Journal Article
%A Schick, Daniel
%A Borchert, Martin
%A Braenzel, Julia
%A Stiel, Holger
%A Tümmler, Johannes
%A Bürgler, Daniel E.
%A Firsov, Alexander
%A von Korff Schmising, Clemens
%A Pfau, Bastian
%A Eisebitt, Stefan
%T Laser-driven resonant magnetic soft-x-ray scattering for probing ultrafast antiferromagnetic and structural dynamics
%J Optica
%V 8
%N 9
%@ 2334-2536
%C Washington, DC
%I OSA
%M FZJ-2021-03898
%P 1237 -
%D 2021
%X Time-resolved resonant magnetic scattering in the soft-x-ray range is a powerful tool for accessing the spatially resolved and element-specific spin dynamics in magnetic materials. So far, the application of this photon-demanding technique was limited to large-scale facilities. However, upgrades to diffraction-limited storage rings supporting only x-ray pulses beyond 100 ps, and the shift of x-ray free-electron lasers toward attosecond pulses aggravate the competition for beamtime in the picosecond time window, which is of utmost relevance for magnetism research. Here we present the development of a lab-based instrument providing sufficient photon flux up to 1.5 keV photon energy covering the soft-x-ray resonances of transition and rare-earth metal atoms. Our setup features the mandatory tunability in energy and reciprocal space in combination with sub-10 ps temporal resolution, exploiting the broadband emission of a laser-driven plasma x-ray source, which is monochromatized to about 1 eV bandwidth by a reflection zone plate. We benchmark our approach against accelerator-based soft-x-ray sources by simultaneously probing the laser-induced magnetic and structural dynamics from an antiferromagnetically coupled Fe/Cr superlattice. Our development lays the foundation for laser-driven resonant scattering experiments to study ultrafast ordering phenomena of charges, spins, and orbitals.
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:000698524000016
%R 10.1364/OPTICA.435522
%U https://juser.fz-juelich.de/record/901911