TY - JOUR
AU - Schick, Daniel
AU - Borchert, Martin
AU - Braenzel, Julia
AU - Stiel, Holger
AU - Tümmler, Johannes
AU - Bürgler, Daniel E.
AU - Firsov, Alexander
AU - von Korff Schmising, Clemens
AU - Pfau, Bastian
AU - Eisebitt, Stefan
TI - Laser-driven resonant magnetic soft-x-ray scattering for probing ultrafast antiferromagnetic and structural dynamics
JO - Optica
VL - 8
IS - 9
SN - 2334-2536
CY - Washington, DC
PB - OSA
M1 - FZJ-2021-03898
SP - 1237 -
PY - 2021
AB - Time-resolved resonant magnetic scattering in the soft-x-ray range is a powerful tool for accessing the spatially resolved and element-specific spin dynamics in magnetic materials. So far, the application of this photon-demanding technique was limited to large-scale facilities. However, upgrades to diffraction-limited storage rings supporting only x-ray pulses beyond 100 ps, and the shift of x-ray free-electron lasers toward attosecond pulses aggravate the competition for beamtime in the picosecond time window, which is of utmost relevance for magnetism research. Here we present the development of a lab-based instrument providing sufficient photon flux up to 1.5 keV photon energy covering the soft-x-ray resonances of transition and rare-earth metal atoms. Our setup features the mandatory tunability in energy and reciprocal space in combination with sub-10 ps temporal resolution, exploiting the broadband emission of a laser-driven plasma x-ray source, which is monochromatized to about 1 eV bandwidth by a reflection zone plate. We benchmark our approach against accelerator-based soft-x-ray sources by simultaneously probing the laser-induced magnetic and structural dynamics from an antiferromagnetically coupled Fe/Cr superlattice. Our development lays the foundation for laser-driven resonant scattering experiments to study ultrafast ordering phenomena of charges, spins, and orbitals.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000698524000016
DO - DOI:10.1364/OPTICA.435522
UR - https://juser.fz-juelich.de/record/901911
ER -