000901934 001__ 901934
000901934 005__ 20240625095121.0
000901934 0247_ $$2doi$$a10.1021/acs.jctc.1c00649
000901934 0247_ $$2Handle$$a2128/29496
000901934 0247_ $$2altmetric$$aaltmetric:117502242
000901934 0247_ $$2pmid$$a34813698
000901934 0247_ $$2WOS$$aWOS:000752980200045
000901934 037__ $$aFZJ-2021-03912
000901934 082__ $$a610
000901934 1001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b0$$eCorresponding author
000901934 245__ $$aAn Enhanced Sampling Approach to the Induced Fit Docking Problem in Protein-Ligand Binding: the case of mono-ADPribosylationhydrolases inhibitors
000901934 260__ $$aWashington, DC$$c2021
000901934 3367_ $$2DRIVER$$aarticle
000901934 3367_ $$2DataCite$$aOutput Types/Journal article
000901934 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639660398_28945
000901934 3367_ $$2BibTeX$$aARTICLE
000901934 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901934 3367_ $$00$$2EndNote$$aJournal Article
000901934 520__ $$aEnhanced sampling methods can predict free-energy landscapes associated with protein/ligand binding, characterizing the involved intermolecular interactions in a precise way. However, these in silico approaches can be challenged by induced-fit effects. Here, we present a variant of volume-based metadynamics tailored to tackle this problem in a general and efficient way. The validity of the approach is established by applying it to substrate/enzyme complexes of pharmacological relevance: mono-ADP-ribose (ADPr) in complex with mono-ADP-ribosylation hydrolases (MacroD1 and MacroD2), where induced-fit phenomena are known to be significant. The calculated binding free energies are consistent with experiments, with an absolute error smaller than 0.5 kcal/mol. Our simulations reveal that in all circumstances, the active loops, delimiting the boundaries of the binding site, undergo significant conformation rearrangements upon ligand binding. The calculations further provide, for the first time, the molecular basis of ADPr specificity and the relative changes in its experimental binding affinity on passing from MacroD1 to MacroD2 and all its mutants. Our study paves the way to the quantitative description of induced-fit events in molecular recognition.
000901934 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000901934 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000901934 7001_ $$0P:(DE-Juel1)174546$$aCapelli, Riccardo$$b1
000901934 7001_ $$0P:(DE-HGF)0$$aLi, Jinyu$$b2
000901934 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3$$ufzj
000901934 7001_ $$0P:(DE-Juel1)177829$$aZhao, Qianqian$$b4
000901934 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.1c00649$$n12$$p7899–7911$$tJournal of chemical theory and computation$$v17$$x1549-9618$$y2021
000901934 8564_ $$uhttps://juser.fz-juelich.de/record/901934/files/APC600254944.pdf
000901934 8564_ $$uhttps://juser.fz-juelich.de/record/901934/files/acs.jctc.1c00649.pdf$$yOpenAccess
000901934 8767_ $$8APC600254944$$92021-10-04$$d2021-10-22$$eHybrid-OA$$jZahlung erfolgt$$z3750 USD Belegnr.: 1200172242
000901934 909CO $$ooai:juser.fz-juelich.de:901934$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000901934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b0$$kFZJ
000901934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174546$$aForschungszentrum Jülich$$b1$$kFZJ
000901934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b3$$kFZJ
000901934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177829$$aForschungszentrum Jülich$$b4$$kFZJ
000901934 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000901934 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000901934 9141_ $$y2021
000901934 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000901934 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000901934 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000901934 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2019$$d2021-02-02
000901934 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2019$$d2021-02-02
000901934 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000901934 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000901934 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901934 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000901934 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000901934 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000901934 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000901934 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000901934 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000901934 980__ $$ajournal
000901934 980__ $$aVDB
000901934 980__ $$aUNRESTRICTED
000901934 980__ $$aI:(DE-Juel1)IAS-5-20120330
000901934 980__ $$aI:(DE-Juel1)INM-9-20140121
000901934 980__ $$aI:(DE-Juel1)JSC-20090406
000901934 980__ $$aAPC
000901934 9801_ $$aAPC
000901934 9801_ $$aFullTexts