
Comparison of structural representations
for machine learning-accelerated ab initio
calculations

Johannes Wasmer, Philipp Rüßmann and Stefan Blügel
Peter Grünberg Institute (PGI-1) and Institute for Advanced Simulation (IAS-1),
Forschungszentrum Jülich

Machine learning with provenance

Representing structures

Introduction

A proof of concept

Acknowledgments

References

 • We acknowledge support by the Joint Lab Virtual Materials Design (JL-VMD) and thank for
computing time granted by the JARA Vergabegremium and provided on the JARA Partition part of the
supercomputer CLAIX at RWTH Aachen University.

 • This work was funded by AIDAS2 – AI, Data Analytics and Scalable Simulation – a virtual lab
between CEA, France and FZJ, Germany, and the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany's Excellence Strategy – Cluster of Excellence Matter and Light
for Quantum Computing (ML4Q) EXC 2004/1 – 390534769.

[1] The JuKKR code package, jukkr.fz-juelich.de
[2] P. Rüßmann, F. Bertoldo, and S. Blügel, npj Computational Materials, 7, 13 (2021)
[3] S. P. Huber et al., Sci Data, 7, 1 (2020)
[4] L. Himanen et al., Computer Physics Communications, 247, 106949 (2020)
[5] F. Pedregosa et al., JMLR 12, pp. 2825-2830 (2011)

 • Here we investigate the feasibility of
accelerating the density functional theory code
juKKR [1] with machine learning potentials
(MLPs) by developing a surrogate model. Its
plugin aiida-kkr [2] for the computational
infrastructure platform AiiDA [3] allows to build
complex workflows with ease. With it, we have
created a database of 7100 embeddings of
single-atom impurities into elemental host
crystals, so far, as training data.

 • Structural representations
or ‘descriptors’ let a learner
infer a target property solely
from the system’s geometry
and chemical species. They
produce a feature vector or
‘fingerprint’ of the system.

 • The DScribe library [4]
offers a variety of descriptors.
As concept illustration, we
focus here on its
implementation of the Smooth
Overlap of Atomic Orbitals
descriptor (SOAP) based on
expansions of atomic density
fields in spherical harmonics

and radial basis functions around atom centers controlled by lmax and nmax.
This makes it permutation-, translation- and rotation-invariant as well as
composable to a global descriptor by averaging over multiple centers.

 • The feature vector length depends
on the resolution of this expansion and
number of species, as the plot shows
(number of species=[5,15,30,60],
resolution nmax=lmax=[5,6,7,8,9],
N=1000 structures). Our dataset has
60 species. The feature matrix is 99.9%
sparse, and claims around 50 GB in
memory at high resolution. This
constrains estimator availability to sparse
 or out-of-memory learning.

 • We are building an atomistic machine learning workbench which will
lend itself to any structural representation-based learning task. The aim is
to improve reproducibility by tracking the provenance along the whole
pipeline. Separate packages encapsulate each step to enable interoperability
beyond aiida-kkr.
 • The inner packages
(featurization & model training)
implement the entity relationships
shown here on the filesystem as
database. Features are stored in
HDF5 to allow in- and out-of-
memory training for scalability. The
interface is decoupled from the
underlying libraries for
maintainability.

 • We intend to leverage AiiDA as
alternative database choice. This
would enable fully traceable and
shareable ML workflows as well as
automatic compute resources
integration. The main challenge here
is to provide wrappers for the
underlying libraries, currently
DScribe [4] and scikit-learn [5].

 • To demonstrate the feasibility of the initial motivation, we used the
workbench for a simple classification task: the prediction of the crystal
structure of the training data impurity clusters (bcc, fcc, hcp).

 • As training set, we use 1752 structures. A global averaged SOAP was
chosen as descriptor with a fairly low resolution nmax=lmax=5. The resulting
feature vectors had a length of 2.5e5. We used 0.75/0.25 as train/test split.

 • As model we used a support vector machine from scikit-learn with linear
kernel, standard scaling and default regularization. This is a quadratic
optimization problem to find the separating hyperplane between the data
points with the largest distance to them.

 • The score (mean accuracy) was 0.93.
This indicates that the SOAP
parametrization indeed has encoded the
crystal structure information in its
fingerprints. An even better result could
probably be achieved if the SOAP kernel [4]
were used instead:

