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    • Here we investigate the feasibility of 
accelerating the density functional theory code 
juKKR [1] with machine learning potentials 
(MLPs) by developing a surrogate model. Its 
plugin aiida-kkr [2] for the computational 
infrastructure platform AiiDA [3] allows to build 
complex workflows with ease. With it, we have 
created a database of 7100 embeddings of 
single-atom impurities into elemental host 
crystals, so far, as training data.

    • Structural representations 
or ‘descriptors’ let a learner 
infer a target property solely 
from the system’s geometry 
and chemical species. They 
produce a feature vector or 
‘fingerprint’ of the system.
 
    • The DScribe library [4] 
offers a variety of descriptors. 
As concept illustration, we 
focus here on its 
implementation of the Smooth 
Overlap of Atomic Orbitals 
descriptor (SOAP) based on 
expansions of atomic density 
fields in spherical harmonics 

and radial basis functions around atom centers controlled by lmax and nmax. 
This makes it permutation-, translation- and rotation-invariant as well as 
composable to a global descriptor by averaging over multiple centers.

        • The feature vector length depends 
on the resolution of this expansion and 
number of species, as the plot shows 
(number of species=[5,15,30,60], 
resolution nmax=lmax=[5,6,7,8,9], 
N=1000 structures). Our dataset has 
60 species. The feature matrix is 99.9% 
sparse, and claims around 50 GB in 
memory at high resolution. This 
constrains estimator availability to sparse  
    or out-of-memory learning.

    • We are building an atomistic machine learning workbench which will 
lend itself to any structural representation-based learning task. The aim is 
to improve reproducibility by tracking the provenance along the whole 
pipeline. Separate packages encapsulate each step to enable interoperability 
beyond aiida-kkr.
       • The inner packages 
(featurization & model training) 
implement the entity relationships 
shown here on the filesystem as 
database. Features are stored in 
HDF5 to allow in- and out-of-
memory training for scalability. The 
interface is decoupled from the 
underlying libraries for 
maintainability. 

   • We intend to leverage AiiDA as 
alternative database choice. This 
would enable fully traceable and 
shareable ML workflows as well as 
automatic compute resources 
integration. The main challenge here 
is to provide wrappers for the 
underlying libraries, currently 
DScribe [4] and scikit-learn [5].

    • To demonstrate the feasibility of the initial motivation, we used the 
workbench for a simple classification task: the prediction of the crystal 
structure of the training data impurity clusters (bcc, fcc, hcp).

    • As training set, we use 1752 structures. A global averaged SOAP was 
chosen as descriptor with a fairly low resolution nmax=lmax=5. The resulting 
feature vectors had a length of 2.5e5. We used 0.75/0.25 as train/test split.

    • As model we used a support vector machine from scikit-learn with linear
kernel, standard scaling and default regularization. This is a quadratic 
optimization problem to find the separating hyperplane between the data 
points with the largest distance to them.
    

    • The score (mean accuracy) was 0.93. 
This indicates that the SOAP 
parametrization indeed has encoded the 
crystal structure information in its 
fingerprints. An even better result could 
probably be achieved if the SOAP kernel [4] 
were used instead:


