
IAS Series
Band / Volume 47
ISBN 978-3-95806-577-2

IAS Series
Band / Volume 47
ISBN 978-3-95806-577-2

Structural plasticity as a connectivity generation  
and optimization algorithm in neural networks
Sandra Diaz Pier

47

St
ru

ct
ur

al
 p

la
st

ic
ity

 a
s 

op
tim

iz
at

io
n 

al
go

rit
hm

 
Sa

nd
ra

 D
ia

z 
Pi

er
IA

S 
Se

ri
es



Schriften des Forschungszentrums Jülich
IAS Series Band / Volume 47





Forschungszentrum Jülich GmbH
Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

Structural plasticity as a connectivity  
generation and optimization algorithm  
in neural networks

Sandra Diaz Pier

Schriften des Forschungszentrums Jülich
IAS Series Band / Volume 47

ISSN 1868-8489  ISBN 978-3-95806-577-2



Bibliografische Information der Deutschen Nationalbibliothek. 
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der 
Deutschen Nationalbibliografie; detaillierte Bibliografische Daten 
sind im Internet über http://dnb.d-nb.de abrufbar.

Herausgeber Forschungszentrum Jülich GmbH
und Vertrieb: Zentralbibliothek, Verlag
 52425 Jülich
 Tel.:  +49 2461 61-5368
 Fax:  +49 2461 61-6103
 zb-publikation@fz-juelich.de
 www.fz-juelich.de/zb
 
Umschlaggestaltung: Grafische Medien, Forschungszentrum Jülich GmbH

Titelbild: ©Andrey – stock.adobe.com

Druck: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2021

Schriften des Forschungszentrums Jülich
IAS Series, Band / Volume 47

D 82 (Diss. RWTH Aachen University, 2021)

ISSN 1868-8489
ISBN 978-3-95806-577-2

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER)
unter www.fz-juelich.de/zb/openaccess.

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,  
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://creativecommons.org/licenses/by/4.0/


Contents

Abstract 6

Zuzamenfassung 7

1 Introduction 12
1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Description of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Structural plasticity in the brain 17
2.1 The brain as a multiscale system . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Basic concepts about the structure and function of biological neural networks . 18

2.3 Structural plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 A model of structural plasticity . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Essential features of structural plasticity . . . . . . . . . . . . . . . . . 26

2.4 Simulation of neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Introduction to optimization algorithms and machine learning 29
3.1 Algorithmic optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Structural plasticity, optimization and control . . . . . . . . . . . . . . . . . . 35

3.2.1 General form of network dynamics . . . . . . . . . . . . . . . . . . . 37

3.2.2 Control for network state trajectories . . . . . . . . . . . . . . . . . . 38

3.2.3 Structural plasticity as an optimization algorithm . . . . . . . . . . . . 41

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3



Contents

4 Implementation and usage of a structural plasticity algorithm in NEST 43
4.1 Implementation of a structural plasticity model in NEST 2.10 . . . . . . . . . . 43

4.1.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Performance on the use cases . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Static visualization of simulation results . . . . . . . . . . . . . . . . . 61

4.1.4 Taking into account distance dependency in simulations . . . . . . . . 65

4.1.5 Changes in the implementation of structural plasticity for the 5th genera-

tion kernel of NEST . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Steering and interactive visualization of structural plasticity 74
5.1 Exploration of the parameter space of neural network connectivity . . . . . . . 75

5.2 Connectivity generation in neural networks . . . . . . . . . . . . . . . . . . . 77

5.3 In situ visualization and steering of connectivity generation . . . . . . . . . . . 81

5.3.1 Simulation instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 ISV system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Application of the ISV framework on use cases . . . . . . . . . . . . . . . . . 85

5.4.1 Two population model . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.2 Whole brain simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Usage of the tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.4 Implementing further use cases . . . . . . . . . . . . . . . . . . . . . 98

5.4.5 Simulating on a supercomputer . . . . . . . . . . . . . . . . . . . . . 99

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Clinical applications 106
6.1 Introduction to structural plasticity in clinical applications . . . . . . . . . . . 107

6.2 Implementation of the STN-GPe neural network with STDP and structural plasticity108

6.2.1 The Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.2 Network and connectivity models . . . . . . . . . . . . . . . . . . . . 109

6.2.3 The Terman-Rubin Neuron Model . . . . . . . . . . . . . . . . . . . . 110

6.2.4 Noise inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.5 Spike-Timing-Dependent Plasticity . . . . . . . . . . . . . . . . . . . 113

6.2.6 Structural Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4



Contents

6.2.7 External Coordinated Reset stimulation . . . . . . . . . . . . . . . . . 115

6.2.8 Using the model to investigate the role of structural plasticity in CRT . 116

6.2.9 Parameter exploration and tunning . . . . . . . . . . . . . . . . . . . . 121

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Structural plasticity as a connectivity optimization algorithm 129
7.1 Definition of the structural plasticity model . . . . . . . . . . . . . . . . . . . 129

7.2 Adaptive optimization of structural plasticity in spiking neural networks . . . . 131

7.2.1 Simple network with two populations . . . . . . . . . . . . . . . . . . 133

7.2.2 Cortical microcircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 Conclusions, future work and discussion 140
8.1 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

List of Figures 145

List of Tables 148

Bibliography 149

5



Abstract

Our brains are formed by networks of neurons and other cells which receive, filter, store and

process information and produce actions. The morphology of the neurons changes through time as

well as the connections between them. For years the brain has been studied as a snapshot in time,

but today we know that the way it structurally changes is strongly involved in learning, healing,

and adaptation. The ensemble of structural changes that neural networks present through time is

called structural plasticity. In this work, I present structural plasticity from its neurobiological

foundations and the implementation of a model to describe generation and optimization of

connectivity in spiking neural networks. I have targeted two relevant and open questions in

the computational neuroscience community: how can we model biologically inspired structural

changes in simulations of spiking neural networks and how can we use this model and its

implementation to optimize brain connectivity to answer specific scientific questions related to

healing, development, and learning. I present several studies which explain the implementation of

structural plasticity in a well established neural network simulator and its application on different

types of neural networks. In this thesis I have also defined the requirements and use cases for

the co-development of tools to visualize and interact with the structural plasticity algorithm.

Moreover, I present two scientific applications of the structural plasticity model in the clinical

neuroscience and computer science fields. In conclusion, my thesis provides the basis of a

software framework and a methodology to address complex neuroscience questions related to

plasticity and the links between structure and function in the brain, with potential applications

not only in neuroscience but also for machine learning and optimization.
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Zuzamenfassung

Unsere Gehirne werden von Netzwerken aus Neuronen und anderen Zellen gebildet, die Informa-

tionen empfangen, filtern, speichern und verarbeiten und Aktionen ausführen. Die Morphologie

der Neuronen verändert sich im Laufe der Zeit, ebenso wie die Verbindungen zwischen ihnen.

Jahrelang wurde das Gehirn als Momentaufnahme in der Zeit untersucht, aber heute wissen wir,

dass die Art und Weise, wie es sich strukturell verändert, stark am Lernen, Heilen und Anpassen

beteiligt ist. Das Ensemble der strukturellen Veränderungen, die neuronale Netze im Laufe

der Zeit darstellen, wird als strukturelle Plastizität bezeichnet. In dieser Arbeit stelle ich die

strukturelle Plastizität von ihren neurobiologischen Grundlagen her und die Umsetzung eines

Modells vor, das die Erzeugung und Optimierung der Konnektivität in neuronalen Netzen mit

Spikes beschreibt. Ich habe mich auf zwei relevante und offene Fragen in der Gemeinschaft der

Computational Neuroscience konzentriert: Wie können wir biologisch inspirierte strukturelle

Veränderungen in Simulationen von neuronalen Netzwerken mit Spitzenbildung modellieren

und wie können wir dieses Modell und seine Umsetzung zur Optimierung der Konnektivität

des Gehirns nutzen, um spezifische wissenschaftliche Fragen im Zusammenhang mit Heilung,

Entwicklung und Lernen zu beantworten. Ich stelle mehrere Studien vor, die die Implementierung

der strukturellen Plastizität in einem gut etablierten Simulator für neuronale Netze und ihre

Anwendung auf verschiedene Arten von neuronalen Netzen erklären. In dieser Arbeit habe ich

auch die Anforderungen und Anwendungsfälle für die gemeinsame Entwicklung von Werkzeugen

zur Visualisierung und Interaktion mit dem Algorithmus der strukturellen Plastizität definiert.

Darüber hinaus stelle ich zwei wissenschaftliche Anwendungen des Strukturplastizitätsmodells

in den Bereichen der klinischen Neurowissenschaften und der Informatik vor. Zusammenfassend

kann ich sagen, dass meine Dissertation die Grundlage für ein Software-Framework und eine

Methodik zur Behandlung komplexer neurowissenschaftlicher Fragen im Zusammenhang mit

der Plastizität und den Verbindungen zwischen Struktur und Funktion im Gehirn bildet, mit

möglichen Anwendungen nicht nur in den Neurowissenschaften, sondern auch für maschinelles

Lernen und Optimierung.

7



Acknowledgements

First of all I would like to thank Prof. Abigail Morrison and Dr. Alexander Peyser for their

mentorship, guidance, and friendship. In 2014 Prof. Abigail Morrison and Dr. Boris Orth gave

me the opportunity to join the SDL Neuroscience where I have had the privilege and joy of

working in the intersection between neuroscience and HPC and do my PhD, for which I will

always be grateful to them. I wish to thank Prof. Uwe Naumann for reviewing my thesis and for

his valuable comments, and Prof. Gerhard Lakemeyer and Prof. Martin Grohe for being part of

my doctoral examination committee. I would also like to thank the co-authors in the different

papers which are part of the research presented in this dissertation, in particular Prof. Thanos

Manos, Prof. Peter Tass, Dr. Christian Nowke, Dr. Butz-Ostendorf, and Dr. Mikael Naveau.

I want to express my deep appreciation to all the collaborators and the users of the structural

plasticity tools with whom I have walked this research path. I would like to thank my friends

and colleagues from the SDL Neuroscience who have provided me their support and helped me

complete this step in my career. Finally, I would like to thank my family for their endless support

and specially to my dear son Aaren and my wonderful husband Emanuele who have always given

me the strength and motivation to give the best of me and achieve my dreams.

This work was supported by the Helmholtz Association through the Helmholtz Portfolio Theme

“Supercomputing and Modeling for the Human Brain” and its Initiative and Networking Fund as
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1 Introduction

1.1 Introduction and Motivation

Models of large scale neural networks are an important tool for understanding the mechanics

of the brain [64, 47, 32]. Such models are created based on experimental information that has

been collected for years by neuroscientists and combine mathematical methods with algorithms

to reproduce observed behavior. The connectome – the collection of all connections between

neurons in the brain – gets its basic structure during brain development and is continuously

refined during the lifespan of a living being. It is known that the connectivity of the network

plays a role in defining the way function is achieved at higher levels of activity. We know that the

changes in synaptic connections in the brain are an essential component of learning, memory,

adaptation to stimuli, and healing after lesions. Understanding how the connectome emerges

and which mechanisms regulate its changes is fundamental for neuroscience to reach a better

understanding of how brain structure and higher function relate.

Nevertheless, obtaining accurate measurements of connectivity is complex, even with the most

advanced experimental techniques, due to the resolution of sensors and difficult access to the

target areas. Non invasive techniques such as diffusion tensor imaging (DTI) and functional

magnetic resonance imaging (fMRI) scans can provide a glimpse to the real complexity of

the problem in structure and function. Higher resolution techniques like electron microscopy

[60], photostimulation [31] and electrophysiological recordings [149] provide more detailed

connectivity information of specific regions. Regardless, creating an exact connectivity map

of even a small region of the brain is extremely challenging [51, 52, 34, 123]. This poses a

significant problem for the modeling approach, as connectivity must be specified. For small

networks, parameter scans can be carried out with respect to the unknown or imprecisely known

connection probabilities between populations. For larger networks, which are more costly to

simulate and also potentially have many more unknown connectivity parameters, this approach is

hardly feasible.
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1.1 Introduction and Motivation

With the emergence of new high performance computing technology in the last decade, the

simulation of large scale neural networks has become possible. Thanks to this, the reproduction

of the behaviour and structure of individual regions of the brain has become a feasible target

for neuroscience in the next years. Due to the number of synaptic connections between neurons

and the complexity of biological networks, most neural network models have manually defined

or static connectivity. This connectivity is commonly obtained by combining experimental and

statistical data. However, the ability to model the dynamic generation and deletion of the links

among neurons, locally and between different regions of the brain, is crucial to study important

mechanisms associated with learning, memory and healing. One way to address the issue of

modeling connectivity within a neural network is to allow a network model to determine its

own suitable connectivity to achieve target activity patterns, e.g. experimental measurements

of the spiking frequency, which is easier to measure accurately than connectivity. In addition

to addressing the problem of network model specification, a framework that accounts for the

appearance and disappearance of synapses on the basis of network activity can provide insight

into how connectivity is generated during development and learning or even on how healing after

lesions takes place [33]. It can also help understand how certain structures arise as a result of

exposition to adequate external stimuli during critical periods in the development of the brain

[68] and the mechanisms underlying experience dependent structural synaptic plasticity [74].

For long time, simulations of neural networks have incorporated synaptic plasticity but few

simulators are prepared for modeling structural plasticity. This is mainly due to the fact that

creating and deleting synapses in a simulation can be computationally costly. Different models of

structural plasticity have been suggested in the last years and different parameters can be used

to guide the model, such as: changes in the intracellular calcium concentration of the neurons,

average membrane potential, correlated activity among neurons, distance between the pre- and

post- synaptic neuron, homeostasis, ionic gradients, among many others. Still, the lack of a

reliable simulation platform which supports the modeling of structural changes through long

periods of biological time hinders our current ability to understand this phenomenon.

Studying the dynamics of connections in simulations of spiking neurons is a challenging but

critical endeavor, indispensable if we want to understand learning, how the brain develops, how

it changes and adapts to the stimuli we perceive with our senses, and how we can design new

ways to treat brain disorders which consider not only the anatomy and physiology but also

the aftereffects of stimulation, surgery, and medicaments in the brain’s function and structure.

Computational neuroscience requires a reliable, efficient, and accessible platform to understand

13



1 Introduction

plasticity in the brain. Today, inspired by these questions and supported by the computational

power now available, it is possible to meet this challenge. My thesis focuses on the modeling of

structural changes in neural networks and its implementation in a simulation framework. During

my work, I have used and modeled structural plasticity in the interface between neuroscience and

computer science. As many algorithms in computer science, the work I present here has been

inspired by nature and artificially refined to fulfill practical tasks.

I have carried out my work in the context of the large international brain research initiatives

including the Human Brain Project in Europe, the US BRAIN initiative and the China Brain

Project among others. So far, structural plasticity has been insufficiently addressed by these large

research initiatives and by smaller computational neuroscience projects. My work aims at making

first steps into a simulation platform for better understanding the changes in the structure of the

brain and their impact in its function.

The main questions explored in this thesis are:

1. How can we model and use biologically inspired structural plasticity in large simula-
tions of spiking neural networks?

2. How can we use structural plasticity as an algorithm to artificially optimize the con-
nectivity within a neural network to answer specific scientific questions?

1.2 Description of this thesis

In Chapter 2 I provide an introduction to structural plasticity in the brain. The chapter discusses

the basic concepts of this phenomenon and its role in learning, healing and development. It also

introduces a model to describe structural plasticity algorithmically.

The second application of structural plasticity shown in this thesis relates to machine learning.

Chapter 3 provides a short introduction to optimization which is one of the fundamental steps

in the learning process. This chapter describes machine learning algorithms as background for

studying the role of structural plasticity in learning in spiking neural network models. The chapter

also includes an overview of analytical frameworks which are useful to study models based on

coupled differential equations and control theory.

Chapter 4 covers the implementation details of the model introduced in Chapter 2. I describe the

integration of such a model into the NEST simulator, a well known neural network simulator with

14



1.3 Contribution

a large and strong community and development structure. This chapter also presents example

networks, performance analysis and benchmarking of the scalability of this implementation.

As mentioned before, the potential of the model that I use in this thesis goes beyond the simulation

of neurobiological modifications in the structure of the network. The algorithm can also be used

to automatically generate connectivity in a network which enables it to have a particular firing

rate per population. However, the algorithm also has its limitations and it is sensitive to changes

in its parameters. This is a frequent problem in models used in neuroscience and other disciplines.

In Chapter 5 a sensitivity analysis on the parameters which define the structural plasticity

algorithm is presented. A formalization of the model is made from the control theory perspective

in order to identify the inputs, outputs, control elements and observables in such a model. I

present an interactive steering and visualization tool which allows the modification of variables in

the algorithm and observe the output of a NEST simulation while running.

The second half of the thesis is dedicated to applications of the structural plasticity algorithm for

different use cases. Chapter 6 discusses the integration of structural plasticity in a model to study

the effects of Coordinated Reset Therapy (CRT) in patients with Parkinson’s disease. Using a

model of the Sub Thalamic Nucleus (STN) and Globus Palidus externus(GPe) in combination

with structural and synaptic plasticity, it was possible to define regimes of plasticity with which

we could reproduce long lasting effects of CRT. The methodology and results of using different

combinations of plasticity parameters in this model are shown and discussed.

Chapter 7 introduces structural plasticity as an artificial optimization rule to generate networks

which exhibits simple behaviour. To do this, learning hyperparameter optimization techniques

were integrated on top of the structural plasticity algorithm. With these experiments, it was

possible to identify features in the parameters of structural plasticity which were linked to general

optimization tasks. These tasks involved making the networks move towards stable firing rate

regimes, changing firing rates depending on stimuli.

The last chapter of this thesis provides conclusions and discusses the future developments and

applications of the structural plasticity framework. Techniques which can be used in the future to

overcome its current limitations are quickly explored.

1.3 Contribution

The main contribution of this thesis is a framework to use structural plasticity as a technique to

study neurobiological changes in simulations of neural networks of spiking neurons and as an

15



1 Introduction

artificial optimization algorithm for generative connectivity. I have built a software infrastructure

for modeling, simulating, visualizing and analyzing structural plasticity to modify, generate and

optimize connectivity in simulations of neural networks. I have also used this infrastructure

to investigate specific scientific questions. I have simulated structural changes induced by

Coordinated Reset Therapy for the treatment of Parkinson’s disease and concluded that time

lapses between stimulation play an important role in its therapeutic effects. I have also used

structural plasticity to propose a way to study evolutionary tuning of learning mechanisms in

the brain applicable to artificial intelligence. With this work, I show the potential of structural

plasticity as a biological optimization algorithm applicable to neuroscience and learning in

computational tasks.
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2 Structural plasticity in the brain

In this chapter I provide an introduction to neural networks, brain structure and plasticity from

the neuroscience and computational perspectives. Its goal is to provide a general overview of

terms and concepts which are useful to understand the work I have performed in my thesis. I start

with basic concepts about the structure and function of the brain considering its multiscale nature.

Then I introduce structural plasticity identifying a set of characteristics which can be used to aid

modeling of this phenomenon. Finally, I present the main brain simulation software used in my

work.

2.1 The brain as a multiscale system

The complexity of understanding the brain starts from its multiscale nature. The brain has

processes taking place at different spatial and time scales. The results and effects of these

processes combine hierarchically to produce new structures and function from one scale to the next

scale. From the molecular level to the cellular and network level all the way to the whole organ,

the brain exhibits a rich interplay of multimodal (e.g. chemical, electrical, electromagnetical, and

physical) dynamics. The time at which these dynamics take place also spans from milliseconds

to years, which makes it hard to create unified mathematical models to describe them. In terms

of simulation technology, this complexity has been addressed by developing independent tools

focusing on specific spatial and time scales of study. This approach, restricted by computing

capacity, limited the study of the interactions between scales making it hard to understand the

relationships between functions and structures. The brain should be studied as a continuously

changing multiscale system [46, 43, 42]. Because of this, it is essential to continue the refinement

and implementation of computationally efficient tools which leverage new hardware infrastructure

and provide new capacity to researchers, enabling them to model, simulate and study the brain in

increasingly complex setups [7].
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Figure 2.1: A) Schematic drawing of a neuron and the basic parts of most interest for this thesis work. B) Diagram of
an axodendritic synapse connecting two neurons. C) Enlarged schematic of a synapse, where the pre-synaptic bouton,
the synaptic cleft and the post synaptic spine are illustrated. Illustrations by Motifolio Inc.

2.2 Basic concepts about the structure and function of
biological neural networks

At the cellular level the brain is a complex ensemble of processing units with various functional

and morphological characteristics. Several types of neurons, glia and inter neurons have so far

been identified by experimental neuroscientists. Neurons are the most functionally and structurally

studied cells in the brain because it is thought that they perform most of the information processing.

Each of these cells is a complex electrochemical machinery which grows and interacts with

neighboring cells. A simplified diagram of a neuron can be seen in Figure 2.1.

The dendrites and the soma of a neuron are the two places where most of the input to a neuron

is received. The shape of the ramifications that the dendrites form can be used as a way to
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2.2 Basic concepts about the structure and function of biological neural networks

morphologically categorize neurons. The axon of a neuron, on the other hand, serves mostly as

means to sending signals to other neurons. The axon is an elongation of the membrane from the

soma, which is usually longer and thinner than the dendrites. In most vertebrates, the axons are

covered by a myelin shed which allows rapid conduction of electrical signals.

Neurons exhibit electrical accumulation and transmission properties which depend on the ex-

change and difference of ionic concentrations between the inner and the outer space of the

cell. In the early stages of neuroscience, it was believed that the brain was formed by a unique

continuous network and this gave birth to the reticular theory. Today we know that neurons

are independent processing units but they are still connected to each other mostly by means of

synapses [164]. This allows the generation of networks of neurons. From experiments, we know

that neurons in the cortex have approximately 10,000 connections to other neurons. We also

know that connections are more frequent between neighboring neurons.

Action potentials or spikes are produced when the membrane potential of a neuron surpasses a

given threshold, triggering a chain reaction of different ion flux through the membrane along

the axon. The membrane potential of the neuron changes depending on its interaction with its

surroundings and on the electrical signals that it receives through its synapses.

Synapses are established between two contact points, one in the pre-synaptic neuron (the neuron

sending the electrical signal) and another one in the post-synaptic neuron (the neuron receiving

the information). Most synapses are formed as a connection between the axon of the pre-synaptic

neuron and a dendrite or soma of the post-synaptic neuron. The actual place where the synapse

occurs is where an axonal bouton and a spine meet. Figure 2.1 in segments B and C show what

a synapse looks like. There is actually no contact between the two parts; they stay separated

by what is called the synaptic cleft. The bioelectrical mechanism that propagates an action

potential flow on the axon of a neuron into a graded potential on the dendrite of another can

deffer according to the type of neurotransmitter that the synapse works with. Described generally,

synapses can have an excitatory or inhibitory nature, contributing to the increase or decrease of

the membrane potential in the post-synaptic cell. Synapses can vary their strength, thus regulating

the effect of the pre-synaptic neuron’s activation on the post-synaptic neuron.

Neural networks are adaptive, morphologically changing assembles of neurons which receive,

process and generate information as electrical signals [138]. Even though the large scale structures

of the brain are well known and understood, we still have little information about the detailed

organization of the whole brain at cellular level. Using the latest imaging and measuring

techniques (EEG, fMRI, 2 Photon Imaging, Array Tomography, etc) we start now to identify
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2 Structural plasticity in the brain

connectivity maps between neurons, within groups of neurons and among regions in the brain.

So far, a full, consistent, complete and reliable map of the connectivity in the human brain does

not exist. Moreover, since the earliest studies of the brain, it has been noted that the connectivity

in the brain changes through time.

2.3 Structural plasticity

Changes in the morphology of the neurons and the connections between them is what we know

as structural plasticity. When using this term in the context of this thesis, I refer particularly

to the generation and deletion of synapses between neurons. Structural plasticity plays a main

role in brain development, learning, adaptation, healing and other brain processes. Kehayas

and Holtmaat [85] give an excellent introduction to structural plasticity and its role in learning,

memory, rewiring following enriched experience after sensory deprivation or stimulation, and its

relationship with long term functional synaptic plasticity.

During brain development, neurogenesis takes place and the basic connectivity between neurons

is established. Neurogenesis is the final step in which neural stem cells divide and specialize

to become new born neurons. Newly born neurons will migrate to their final location and,

once there, they will mature, grow and create connections with other cells. Neurons tend to

create synapses with other neurons in their vicinity and with which they establish affinity by

following biochemical attractors. They also seem to follow rules to reach and stabilize a certain

level of electrical activity and intracellular ionic concentrations. In this work I will not discuss

neurogenesis but I will show how structural plasticity can be used as a generative algorithm

to build connectivity in a totally disconnected network using homeostasis. Homeostasis is the

dynamic preservation of equilibrium, and, in the context of structural plasticity, the term is used

to indicate the process that neurons use to achieve a metabolic state by changing their morphology

and connections. The homeostatic process implies that the neuron has a cell-autonomous set point,

a level of activity to reach and hold. This set point was first proposed in Maffei and Turrigiano

[102] as a synaptic scaling factor and later experimentally demonstrated in Hengen et al. [67] and

Hengen et al. [66] as cell-autonomous.

Even though the period of highest plasticity in the brain is during development, the mature brain

retains the ability to change its structure. One of the experimental areas which provides strong

support to structural changes in the mature brain is related to the study of experience-dependent

plasticity. For example, dendritic spines have been identified to be very changing and moving
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elements [152, 75]. Experiments have shown that only about one half of the spines in the barrel

cortex of the adult mouse will persist for a period longer than a month [152]. Several studies

illustrate how stimuli deprivation has a strong impact in the formation of neural structures and

reorganization of the sensory cortex [82, 84, 83, 91].

Changes in connectivity during healing in the brain is also a thoroughly studied topic in clinical

medicine. Rewiring of neural networks plays an essential role for the compensation of missing or

distorted input for processing capabilities in the network. Since the 1960s, studies on experience

dependent structural plasticity have shown that stimulus deprivation triggers rewiring of the

networks, leading to synaptic loss and rewiring of connectivity to neighboring areas [76]. For

example, in [162] Wiesel and Hubel discuss the ability of the network to recover functionality

after deprivation of stimuli in early age. They showed that there are periods of time in early

development during which critical steps in the formation of robust connectivity take place;

permanent damage is produced when these periods of plasticity are hindered. Their results show,

for example, that young cats did not achieve any degree of recovery if they were exposed to eye

stimuli deprivation for the first 3 months of life. Similar studies also support the hypothesis that

plasticity in the brain is strongest during early life and that critical periods of synaptic plasticity are

essential to avoid permanent loss of certain functions. Although still highly contentious, the adult

brain has been shown to be still plastic and able to rewire to reestablish certain functionality after

injuries or deprivation [106] or a pathologic state is reached. For example, structural plasticity

has been proposed as an underlying mechanism in deep brain stimulation therapies targeted to

reduce symptoms of Parkinson’s and other related diseases [62]. Structural plasticity has also

been studied in the context of stroke recovery. In Gerrow and Brown [57] the authors discuss how

after stroke, the peripheral areas to the affected stroke zone, also called peri-infarct zones, show

expression of growth factors similar to those found in the brain during development. Gene and

protein expression is altered in these zones, contributing to the rewiring of the neural network

around the stroke zone. Changes in the connectivity involve both intracortical and long range

projections. Evidence confirms that new connections form mainly in the regions functionally

related to the affected zone.

Another relevant field for structural plasticity is learning and adaptation. Donald O. Hebb, the

father of the current theory about learning, highlighted in his work several mechanisms at cellular

level which are linked to this effect [63]. Among these mechanisms, he suggested that the

correlated activation of neurons led to the enhancement in the strength of synapses among those

neurons, leaving a long lasting trace which could be later translated into learning. He stated
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2 Structural plasticity in the brain

that the basis for this mechanisms was the formation of new contacts between neurons and the

strengthening of existing ones.

Structural plasticity plays a key role in learning by removing weak synapses and enabling new

contacts with other neurons which, if reinforced by correlated activation, can lead to learning a

new function. This has been the topic of several publications in the last years [41, 148, 50]. The

combination of synaptic and structural plasticity leads to a powerful neurobiological infrastructure

to support the acquisition of new functions and refinement of existing ones.

2.3.1 A model of structural plasticity

A theoretical model of structural plasticity that incorporates the dynamic generation, deletion and

rewiring of synapses within a network was presented by Butz and van Ooyen [22]. In this model,

synapses are represented as connections between pre and a post synaptic elements. The growth or

recession of these synaptic elements is an independent process for each neuron. The model is

based on the idea that plasticity in cortical networks is mainly driven by the need of individual

neurons to homeostatically maintain their average electrical activity. As a consequence, if activity

is lower than a desired set-point, neurons will form synaptic elements, and remove them when

activity becomes too high. Additionally, a minimum level of activity is needed to form synaptic

elements at all. If activity falls below this level the neuron will remove synaptic elements, too.

Results show that small networks of hundreds or thousands of neurons robustly grow towards a

stable homeostatic equilibrium of activity and connectivity. An important advance on earlier work

is that all cell types have different desired average firing rates (achieved by different homeostatic

set-points) and develop connectivity accordingly. These local rules for structural plasticity were

shown to account for network rewiring after a partial loss of external input (deafferentation) and

shows remarkable similarities with biological data from network rewiring in the primary visual

cortex after focal retinal lesions [82, 165]. Further analysis by Butz et al. [23] of changes in

network topology revealed that betweenness centrality could be used as an indicator of successful

brain repair, in the sense that it is related to the ability of the neurons to restore their electrical

activity by network rewiring. The authors concluded that structural plasticity may account for

network reorganization on different spatial scales.

The original formulation of the structural plasticity algorithm defined in Butz and van Ooyen [22]

consists of three repeating steps which are described as follows:

1. Update in electrical activity and intracellular calcium concentration. The electrical activity
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2.3 Structural plasticity

is calculated for each neuron on a millisecond timescale. The time-averaged level of the

neuron’s electrical activity drives changes in neuronal morphology. Intracellular calcium

concentration is updated according to the electrical activity as follows:

dCa
dt

=

−
Ca(t)

τ
+β if the neuron fires

−Ca(t)
τ

otherwise
(2.1)

where τ is the calcium decay constant and β is the calcium intake constant which defines

how the intracellular calcium concentration increases each time the neuron fires. Calcium

concentration is linearly proportional to average firing rate and thus is the measure that is

used to guide the growth dynamics of the synaptic elements.

2. Update in synaptic elements. The detailed morphology of the synaptic elements is ab-

stracted, and is represented in this formulation only by the number of possible synaptic

contacts on axons (axonal elements representing axonal boutons: senders of synaptic

activity) and on dendrites (dendritic elements representing dendritic spines: receivers of

synaptic activity) collectively called synaptic elements. Synaptic elements are created

or deleted according to a homeostatic rule. In general, the homeostatic rule will create

synaptic elements when the activity is lower than the desired set point and delete them

when the activity is higher until the desired activity level is achieved. This homeostasis is

represented by a function which defines how quickly new elements are created or deleted

according to the current level of electrical activity. The original work from Butz and van

Ooyen considers two types of growth function, linear and Gaussian:

Linear:
dz
dt

= ν(1− 1
ε

Ca(t))

where ν is the growth rate and ε is the target level of calcium concentration that the neuron

should achieve. An example of such a growth rule can be seen in Figure 2.3 a.

Gaussian:
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Figure 2.2: Growth rate curves and their effect on firing rate and synaptic element creation / deletion. a) Example of
growth rate curves determining the rate of creation or deletion of synaptic elements in the structural plasticity model.
The parameters which define the shape of the curve are two firing rates, the minimal firing rate for creating/deleting
synaptic elements η and the target firing rate ε , and the growth rate ν which is the value of the curve in synaptic
elements/s when the firing rate λ = (ε−η)/2. The red, cyan and purple curves have a negative value of ν which
implies that synaptic elements will be deleted when the current firing rate is less than the target rate. These curves are
therefore suitable for inhibitory synapses. Conversely, synaptic elements will be created when the current firing rate
exceeds the target. The brown curve has a positive ν which works in the opposite way. All curves display different
values of η ; in particular, the cyan curve has a negative value of η . In these cases, all curves have a target firing rate
ε of 8 Hz. It is important to note the slope of each curve close to the target firing rate ε; this slope is critical for the
stability of the optimization algorithm. b) Firing rate externally imposed on sample systems with Gaussian growth
curves shown in (a); and c) the resulting evolution of synaptic growth rate through time due to the firing rate changes
depicted in (b). See Figure 5.3b for an equivalent Gaussian growth curve for the two-population example in this
chapter, and the resulting free (not driven) dynamics in Figure 5.3c, d, and e.

A Gaussian curve (Figure 2.3 b) is an example of a homeostatic rule describing the growth

rate of connection points for neurons. The parameters defining the growth and decay of

synapses are the minimum firing rate η required to generate synaptic elements (or destroy
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Figure 2.3: a) Example of a linear growth function. b) Example of a Gaussian growth function.

them, depending on sign of ν), the value ν of the growth rate curve when the firing rate is

(ε−η)/2, and the target firing rate ε . Modifying these values alters the way connectivity

is created and destroyed in the network.

Thus, to calculate the number of synaptic elements per second (dz/dt) to create (or remove,

if negative), we use:

dn
dt

= ν H[λ −η ]

[
2 pow2

(
−
[

2
λ −η

ε−η
−1
]2
)
−1

]
(2.2)

where pow2 x is the power function 2x and H[x] is the Heaviside step function equal to 0

when x < 0, otherwise 1. Equation (2.2) is equivalent to the Gaussian used in Diaz-Pier

et al. [37] and in the original model by Butz and van Ooyen after directly replacing the

calcium concentration with the firing rate λ .

Figure 2.2 shows an example of the changes in the synaptic growth rate (panel c) using

different gaussian growth rates (panel a) as the firing rate of a model neuron changes

through time (panel b).

A synaptic element is formed (or deleted) when the rounded down z value increases (or

decreases) by one. Newly-formed synaptic elements are initially vacant and available for

synapse formation.
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2 Structural plasticity in the brain

3. Update in connectivity. In every connectivity update, available synaptic elements allow

the formation of new synapses, while deleted synaptic elements dictate synapse removal.

Every available synaptic element has the same probability to be randomly chosen for a new

connection. Synaptic elements to be deleted are also chosen in a uniformly random manner

from the pool of already connected elements. It is important to notice that in this algorithm,

when a synapse breaks due to the deletion of one synaptic element, the counterpart remains

and becomes vacant again. This remaining counterpart can form a new synapse at the

next update in connectivity. This effect models network rewiring by re-routing of axons or

dendrites, a process known as reactive synaptogenesis [87].

An important characteristic of this algorithm is that it relies on global communication to update the

connectivity in the network, since available compatible synaptic elements must be matched during

the execution of the algorithm to create new connections. This must be taken into consideration

for the design of any implementation of this model.

2.3.2 Essential features of structural plasticity

The following list summarizes the main abstract features of structural plasticity:

1. Structural plasticity considers the creation or deletion of synapses between a pre- and a

post-synaptic neuron.

2. It is a slow process as compared to synaptic plasticity and neural dynamics.

3. It plays a relevant role in development, healing, learning and re-learning.

4. The neuron has a local view of its metabolic needs and is guided by homeostasis. It works

as a controller of the neuron’s metabolism.

5. Changes in the activity of one neuron have an impact on all other neurons connected to it.

This impact might be subtle or strong depending on the strength of the synapses they share.

6. Neurons connect with a higher probability to other neurons closer to them.

7. Unused connections become weaker and are subject to be removed in favor of new connec-

tions which might be more useful to the neuron.

Please see Chapter 8 for a discussion on how this thesis implements the aforementioned features.
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2.4 Simulation of neural networks

Scale Example simulators
Whole brain TVB [131]
Networks of neurons NEST [59], Arbor [4], Neuron [25], Brian [140], GeNN [166]
Morphologically detailed neurons Arbor, Neuron
Ion channels and molecules STEPS [70], GROMACS [71]

Table 2.1: Examples of simulators for the different scales of the brain.

2.4 Simulation of neural networks

Simulations constitute today one of the main tools that neuoscientists have to understand how the

brain works. The dynamics of the diverse functional structures in the brain can be mathematically

modeled to answer specific scientific questions. The smaller the spatial scale, the larger the

computational complexity and the smaller the time scale where relevant dynamics are found.

Several simulators for different spatial scales of the brain exist and are supported by the computa-

tional neuroscience community. Examples of them can be seen in Table (2.1).

Structural plasticity takes place in the connections between neurons and, for this reason, in this

thesis I concentrate on the scale of networks of neurons. In agreement to the chosen scale, the

main simulation platform I have worked on is NEST [59]. NEST is a simulator of networks of

spiking neurons where the morphology is abstracted and neurons are treated as points without

explicit axons or dendrites. Networks can be created by connecting neurons using different types

of synapses. In NEST, neurons are modeled by sets of differential equations which describe the

changes in their membrane potential. Synapses are also modeled using differential equations

which describe how action potentials are propagated from the pre- to the post-synaptic neuron.

NEST has a large community of users and its main target applications are information processing,

network activity dynamics, learning and plasticity. The NEST core is written in C++, with an

interface in a domain language called SLI and a higher level user interface in Python. NEST

can be run in laptops or supercomputers, and ensures the exact reproducibility of simulation

results on any platform used. The simulation scales that NEST supports go from one neuron

to several millions of them. Additionally, NEST is parallelized using MPI and openMP, which

allows the simulation of large scale networks. The largest simulation performed to date in the K

supercomputer in Japan included 1.86x109 neurons and 11.1x1012 synapses, taking 793.42s to

build the network and 2481.66s to simulate 1s of biological time [94].

Another relevant simulator in the context of this thesis is The Virtual Brain (TVB) [131]. TVB is
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2 Structural plasticity in the brain

a simulator of neural mass models which describe the average activity of large groups of neurons.

This makes TVB a simulator for a larger spatial scale than NEST. TVB allows the simulation

of whole brain signals at a level which can be compared to experimental data obtained by MRI,

fMRI or EEG. Typical simulations with TVB can consider biological times from milliseconds to

minutes or hours. TVB is relevant in the context of structural plasticity because average firing rate

of regions of the brain can be linked to components of homeostatic rules. Simulations done with

TVB are faster than NEST because the level of complexity and detail is lower. Both simulators

can be used together to make more efficient and useful predictions about the way structural

changes at neuron level impact the function at network level.

2.5 Summary

In this chapter I introduced useful concepts about neuroanatomy, computational neuroscience

and mathematical models to understand structural plasticity and its integration in simulations

of networks of spiking neurons. I introduced structural plasticity as the key concept in this

thesis and extracted a set of characteristics from its definition in the neuroscience domain. These

characteristics will be used in the next chapters as requirements for biologically realistic modeling

of this phenomenon and guide the implementation. This chapter also provides a brief context on

current simulation technology used in computational neuroscience.
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3 Introduction to optimization algorithms
and machine learning

In the previous chapter I introduced several concepts about neurobiology and computational

neuroscience which are useful to understand structural plasticity. In this chapter I shift the

perspective to the computer science field, specially focusing on algorithmic optimization and

machine learning. This shift is motivated by the fact that structural plasticity works as a mecha-

nism to find and learn functionally optimal network structures which support specific homeostatic

conditions. The history of computer science has seen the emergence of a variety of algorithms

inspired by nature which are useful to solve optimization problems. The goal of this chapter is to

provide a quick introduction to algorithms commonly used in machine learning as a background to

understand structural plasticity as an optimization algorithm. This chapter also introduces useful

formalizations which will later help understand the steering and visualization tools developed

for the analysis of structural plasticity in simulations. With this background it will be easier to

explain the role of structural plasticity in the optimization of connectivity in neural networks, but

also its potential to solve problems outside of the neuroscience realm.

3.1 Algorithmic optimization

Swarms In 1989, Craig Reynolds [124] developed the concept of swarm intelligence. Swarms

are based on the movement of animal ensembles such as flocks of birds, schools of fish and herds

of land animals. The algorithm takes into account groups of independent agents which have very

simple behaviour, mostly consisting on following its neighbors. This means agents have only a

very limited and local view of the whole system. Even when the rules are simple, the ensemble

motion of these agents can create complex dynamics.

Now let’s assume that we have a function with several parameters and multiple values for

these variables. The set of all the combinations of values that these parameters can have is
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3 Introduction to optimization algorithms and machine learning

called the parameter space. In order to use swarm intelligence to find the optimal value of this

function (global maxima or minima), we allow a group of independent agents to explore possible

parameters in a space and move towards the optimal value by learning from experimenting

different regions of the space. In this algorithm each agent is initialized in a random position in

the parameter space. The algorithm progresses iteratively in epochs like many other machine

learning algorithms. On each epoch, each agent calculates a velocity using its experience and the

experience from its neighbors. The agent then moves towards the best visited position so far by it

or its neighbors with the calculated velocity. As a difference to other algorithms such as genetic

algorithms or differential evolution, this algorithm has memory in order to know the best visited

position so far [88].

The general form of this algorithm [154] can be described as:

vk+1 =~a⊗~vk + ~b1⊗ ~r1⊗ (~p1−~xk)+ ~b2⊗ ~r2⊗ (~p2−/~xk), (3.1)

xk+1 =~c⊗~xk + ~d⊗~vk+1 (3.2)

Where the symbol ⊗ is the cross product,~vk is the velocity vector at time k, ~a is a momentum

factor, ~p1 is the particle’s previous best position and ~p2 is the globally best position in the whole

swarm. Coefficients ~b1 and ~b2 define the strength of the attraction between particles. xk is the

position of the particle at time k and is updated based on the velocity using the coefficients~cand~d.
~r1 and ~r2 are random numbers.

This algorithm has been improved through time. Some examples of variations of the original

approach improved for multi-objective optimization, efficiency, deep learning and data driven

algorithms can be consulted in Ali and Kaelo [6], Blackwell and Branke [13], Eberhart et al.

[44], Taormina and Chau [143].

Ant colony optimization Ant colony is an algorithm based on the movement of ants and

how they find minimum paths to bring food into their colonies. This algorithm was first suggested

by Marco Doring in [39]. The algorithm uses a fading trace inspired in the pheromones that

ants segregate in order to efficiently find the shortest path in a graph. The concentration of the

pheromones on each potential path from the origin (node A) to the hive (node B) is sensed by each

ant. The pheromone trail τi j between node i and j is updated every time step with an exponential

decay τi j = (1−ρ)τ where ρin(0,1] and increased by a constant every time an ant visits the node
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j coming from node i τi j = τi j +δτ [40].

An ant k located in node i will decide which node from the set Ni of nodes connected to i to visit

next based on the following rule:

pk
i j =

{
τi j j ∈ Ni

0 j /∈ Ni
(3.3)

Longer travel times on each path contribute to a lower density of pheromones as they evaporate

with time. Higher concentrations mean that more often ants have passed thorough it. This

eventually leads to finding shortest paths between food and the hive. This can be translated to

finding optimal connections between two nodes in a graph.

Evolution strategies There are several algorithms which fall in the category of evolution

strategies. All of them are black box heuristic search algorithms inspired by evolution.

Genetic algorithms (GA) are one of the most popular gradient free optimization algorithms used

today. Designed by John Holland and based on the evolutionary process or natural selection

[73], GA starts with a random population of individuals (sometimes called chromosomes) which

encode unique instances of the problem with specific parameters. These individuals are assessed

for their fitness, using a measure of their optimality to fulfill the designated task. Once this

fitness is calculated, it is used to identify the best individuals in the population. Depending on

the implementation, a portion of the best individuals is passed to the next generation. In some

proportion, individuals are also combined and mutated to form the new generation. The new

generation is expected to preserve the best features of the best individuals while still allowing

exploration of the parameter space.

The pseudocode below illustrates a basic implementation of GA.

Other forms of evolution strategies, like the one used in [130], are based on a progressive update of

a parametrized search distribution over the parameter space. This means that the populations here

are represented as probability distributions instead of groups of specific instances of parameters

like in GA. By evaluating the fitness of a population by sampling from the current search

distribution, parameters are updated to increase the overall fitness of the subsequent population,

following a gradient in parameter space. Evolution strategies have recently been shown to work

effectively in high-dimensional parameters spaces and to be well parallelizable.
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3 Introduction to optimization algorithms and machine learning

Initialize the first generation with a population of N individuals, each with random values
for the M parameters to be optimized;

while stop criteria is not met do
Measure the fitness of the individuals in the current population;
Select individuals with best fitness and take them to the new generation;
Select a set of random individuals from the current generation and take them to the
new generation;

Create a new set of individuals by combining parameters from the best individuals;
Mutate with low probability the individuals in the new generation;

end

Gradient descent Gradient descent (GD) is an optimization algorithm which is based on the

calculation of the gradient of the function to be optimized starting from a random point in the

parameter space [26]. The largest gradient, meaning the direction of the largest improvement of

the value of the function, is then taken as next step to explore the surrounding parameter space.

This is iteratively performed until no improvement is found, meaning either a global or local

mimima is found, or a set of steps has been achieved. Gradient descent needs that the function

to be optimized is differentiable and that the right step size (also known as learning rate) α is

chosen such that the exploration is successful. The partial derivative of the fitness function with

respect to the different parameters pi to be optimized is calculated as follows:

∂

∂ pi
F(pi) = ∇piF, (3.4)

and on each iteration the value of each parameters is updated using the following equation:

pi = pi−α∇piF (3.5)

Currently, gradient optimization algorithms are the most widely used methods in machine learning.

A vast family of algorithms has been developed from this basic concept, aiming at improving

their performance, reliability, robustness and adaptation to ill-posed problems. Back propagation

(BP) is a derivation of gradient descent which was first developed for continuous control [86]

and then ported to artificial neural networks [160]. Today, different implementations and forms

of BP are the preferred method for training or optimizing the weights of deep neural networks

because BP can lead to high and robust performance, and training is very efficient compared

to other methods. Some popular ML frameworks like Tensorflow [1, 2] and Pytorch [118, 117]
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3.1 Algorithmic optimization

provide automatic differentiation already integrated into their network models, which makes

training easy and efficient. It consists on propagating error gradients layer by layer into the

network in order to change the connections according to their contribution to the generated output.

Because of its nature, BP is very well suited for feed forward neural networks with activation

functions without discontinuities. An interesting extension of the BP algorithm is the so called

Back Propagation Through Time (BPTT) [159], which is able of working with recurrent neural

networks by unrolling them in time and creating equivalent feed forward networks.

Simulated annealing Inspired by statistical mechanics, in 1983 Kirkpatrick et al. [90] intro-

duced the concept of optimization by simulated annealing. Annealing is a process in metallurgy

in which metals are heated to a high temperature and then cooled gradually. This process makes

metals more resistant and lowers the amount of defects because the slow temperature reduction

allows atoms in the metal have time to find their most stable configuration. The optimization

algorithm is based on the concept that finding the low temperature state of a system using a

measure to calculate its energy, is an optimization problem which can be ported by analogy to

other models. This algorithm is useful for multivariate optimization as it changes the different

parameters in the system with a changing speed depending on the stability of the model.

The pseudocode illustrating a basic implementation of simulated annealing follows: In this

Initialize the system at a random point in the parameter space p = p0;
while stop criteria is not met do

Select a random point in the parameter space pnew located in the neighborhood of the
current location p;

if P then
(

end
E(p), E(pnew), T) ¡ R(0,1): p = pnew Update the temperature T according to the

annealing schedule;
end

pseudocode P(E(p),E(pnew),T ) is an acceptance probability function which depends on the

”energy” of the system (measure to be optimized) at the current and new selected point in the

parameter space and on the temperature T. R(0,1) is a random value uniformly drawn between 0

and 1. The annealing schedule is the selected method to update the temperature as the optimization

process evolves. Examples of such a schedule are a simple linear reduction or an update depending
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3 Introduction to optimization algorithms and machine learning

on a percentage of the total parameter space explored.

Multi-objective optimization Some optimization problems require that the system satisfies

not only one but multiple targets. These targets are defined by measures of different features

of the output produced by the system. Some of these targets might depend on each other or

have competing effects, meaning that reducing the error on one will increase the error on one

or several others. Finding the pareto front of a system is the ideal solution for a multi-objective

optimization. The pareto defines the border where reducing the error on any single measure will as

a consequence make one or more measures worst. A difficult part of multi-objective optimization

is defining the right collective measure which considers all the objectives and really reflects their

priority in the optimization process. A general weighted fitness function for multi-objective

optimization can be described as follows:

F(m) =
N

∑
i=1

wimi,
N

∑
i=1

wi = 1 (3.6)

where m is set of N target measures considered in this function and wi is a factor which indicates

the importance of the measure mi for the overall fitness of the system. A fitness function could

consider all objectives equally important or highlight some of them more than others. The way

this measure is formed will directly impact the performance of the optimization process and the

final result.

Learning as an optimization problem The definition of learning according to Mitchell

[109] is:

“A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.”

By experience here it is meant the execution of the task and the feedback that is given based on

this execution and its results. Algorithms, such as neural networks, are trained to perform a task

by optimizing their parameters or internal configuration in order to minimize the error between

the produced and the desired output. Several optimization algorithms have been developed, tuned,

enhanced and extended to fulfill requirements from machine learning. This is because the success

of algorithmic learning heavily relies on making an update in the system which improves the

results of future executions of the task and interactions with the environment. In other words,
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3.2 Structural plasticity, optimization and control

in order to improve the result the learning system should aim at optimizing its performance

and, as a consequence, reducing the error between the actual and the desired result. In fact,

nature tends to optimize resources whenever possible. This is even reflected in evolution, where

optimal adaptation to the environment is rewarded with survival and progeny. Optimization is

key to learning because, by evaluating the result of several actions, one should learn which action

produces “more optimal“ results.

3.1.1 Hyperparameter optimization

Each optimization algorithm has parameters on its own. These parameters help adapt the algorithm

to specific applications and in most cases it is not intuitive how their initial conditions must be

set. They impact the overall efficacy of the algorithm and, as a consequence, most of the time

need to be manually tunned by an expert. Hyperparameter optimization is the term used to define

the optimization of the parameters of the optimization algorithm. It is process which considers

two nested optimizers, where the goal of the first optimizer remains to minimize the error of the

system, while the goal of the second is to optimize the performance of the first optimizer.

Learning to learn [150] or meta learning is a hyperparameter optimization paradigm which aims

at optimizing learning performance. It consists of generating training protocols which interleave

similar tasks and perform learning updates at different scales. It leaves slow, usually structural,

changes to an external optimizer which favors generalization and relies on fast updates from

the inner optimizer or learning system to adapt and learn specific tasks. It has been proposed

as a way to achieve few shot learning of new tasks and can be combined with methods to avoid

catastrophic forgetting [8, 72, 156]. Learning to learn can be seen as a paradigm to dynamically

improve learning performance by exposing the system to a family of tasks which share common

traces. This method relies on the ability of the system to transfer previously learned and useful

configurations or parameters from one task to another.

3.2 Structural plasticity, optimization and control

Nature has taken millions of years to develop and optimize our brains to perform specific tasks.

Our brain is the results of years of reconfigurations, tests, successes and failures. Today it is still

unclear to us how the mechanisms for adaptation, learning and brain recovery among many other

complex functions of the brain really work. The ability to adapt and learn or relearn a capacity
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3 Introduction to optimization algorithms and machine learning

damaged through a lesion is believed to be linked to changes in the networks that form the

brain. How these changes have come to be defined and constrained is a question of evolutionary

optimization. As it has been said before, neural networks change their structure as they are

generated, as a response to external stimuli and as a response to other structural and biochemical

changes. One can imagine that the set of rules which guide structural and synaptic plasticity has

a defined goal, which is reflected in the robustness, flexibility and capacity of our brains.

The Webster dictionary defines optimization as the ”an act, process, or methodology of making

something (such as a design, system, or decision) as fully perfect, functional, or effective as

possible; specifically : the mathematical procedures (such as finding the maximum of a function)

involved in this.” Optimization in mathematical terms refers to finding a minima or maxima of a

function. Control theory deals with the steering of continuously operating dynamical systems. It

is a subfield of mathematics which describes systems using a transfer function which describe

how input is transformed into output. Changes can then be made to such systems in order to

modify their output. The goal is to optimize the performance of a system by reducing the error

between its real and a desired output. It is considered here, that the output of the system can

be observed and that this value changes when the system’s parameters and input are modified.

The error is then a function of the inputs and the system’s internal configuration. The shape of

this function and its characteristics impact greatly the ability of a control algorithm to find the

optimal solutions for a given system. This function can be highly degenerate, meaning that there

are several parameters in the system which lead to the same value for the chosen measure. The

function can also have several local and global minima or maxima which leads to finding only

sub-optimal solutions.

While control theory deals with the problem of taking a dynamic system progressively towards a

desired output, optimization deals with finding the best configuration of a system which provides

the desired output under the measure of the selected fitness function. In this thesis I use the

concept of a controller as an element external to the observed system which can perform a

dynamic optimization process on it. My motivation to see plasticity from the optimization

perspective is that this phenomenon aims at taking a neural network from an initial state A to a

final state B, where the error between the actual and desired output of processing a given input

is ”hopefully” minimized. I treat the brain as a system with a dynamic structure, which can be

modified and in which several mechanisms of control are simultaneously working to obtain an

specific output. In this thesis the focus is on structural plasticity but its combination with synaptic

and other means of plasticity is essential to better understand and study the brain as an organ
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3.2 Structural plasticity, optimization and control

capable of learning, adapting and healing. A working theory is that the essential features of how

this optimization process takes place, seem to have been refined by evolution and imprinted into

the plasticity rules we try to elucidate today.

3.2.1 General form of network dynamics

In [114], we introduced a formalization of neural networks which can be used to understand them

as a controllable and observable system. Let a neural network be defined by a set of ordinary

differential equations in which x1(t),x2(t)...xn(t) are state variables of the system at time t. It

is assumed that neurons in this model can be either in an active or quiescent state. The master

equation of a neural network has been derived and explained in Cowan [29] and Ohira and Cowan

[115]. This equation provides a mathematical description of the evolution of stochastic neural

networks in the form of a Liouvillian:

L = α

N

∑
i=1

(∆+i−1)∆−i +
N

∑
i=1

(∆−i−1)∆+i φ

(
1
ni

N

∑
j=1

ωi jx j

)
(3.7)

where α is the decay function after a neuron has spiked, ∆+i and ∆−i are the raising and lowering

operators which take a neuron i to and from an activation state, ni is the number of connections to

neuron i, N is the total number of neurons in the network, φ is the activation rate function which

depends on the neuron model and ωi j is the strength of the connection between neuron i and j.

Synaptic growth and connectivity variations in neural networks further increase the complexity of

the system. In the case of variable connectivity, the network master equation is transformed into:

L = α

N

∑
i=1

(∆+i−1)∆−i +
N

∑
i=1

(∆−i−1)∆+i φ

(
1

ni
(
u(t)

) N

∑
j=1

ωi j
(
u(t)

)
x j

)
(3.8)

where both ωi j and ni depend on the control signal u coming from the synaptic and structural

plasticity algorithms at time t. This formulation is introduced to expose variables u(t) in the

system, which can be controlled. Modifications in these signals induce changes in the network

and provide means to achieve a target dynamic profile. However, it is worth noting that this

approach is also applicable to non-stochastic neural networks.
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3.2.2 Control for network state trajectories

Both synaptic and structural plasticity can be seen as biological multivariate controllers. Under

this view, the system gradually creates and destroys connections between neurons, or modifies

the strength of existing synapses (control), to achieve a transition from one initial state to a final

steady (or even homeostatic) state. This final state can be a previously known activity state which

has been altered, as in repair after a lesion, or a new activity state to be achieved, as is the case in

learning. Thus, the evolving connectivity problem can be mathematically expressed in terms of

control theory as defined in Kirk [89].

In this case, the control signals refer to the variations in the connectivity of the network while the

states refer to the dynamics of the network. The state equations take the form of:

ẋ = a
(
x(t), u(t), t

)
(3.9)

where u is the history of control signals during the interval [t0, t f ], and the state trajectory denoted

by x is the history of state values during the same time interval. A control history which satisfies

the constraints of the system (in this case, experimental parameters of neurons and synapses)

during the time interval of interest is called an ‘admissible control’. On the other hand, an

‘admissible trajectory’ is a state trajectory which satisfies the constraints of the state variables

through the whole period of interest. The final state of the system is then required to lie in a

specific region, defined as the target set, of the n+1-dimensional state-time space.

Figure 3.1 shows the diagram of a single neuron from the control perspective. The activity of this

excitatory neuron is determined by a nonlinear transfer function fE(V ) acting on the membrane

potential V . The excitatory neuron receives positive input in the form of a Poisson spike train P(t)

filtered by he(t). It also receives positive input from the excitatory population and negative input

from the inhibitory population which is weighted by the number of incoming connections c1 and

c2 respectively and filtered by hi(t) and he(t). he(t) and hi(t) therefore denote the excitatory and

inhibitory post-synaptic potentials, respectively. The excitatory activity is weighted by c1, filtered

by he(t) and fed into the inhibitory and excitatory populations. The controller (e.g. structural

plasticity algorithm) C(ε−λ ) translates the error between the current firing rate of the neuron λ

and the desired firing rate ε into a control signal u(t). This signal changes c1 and c2 accordingly

in order to modify the incoming connections to the neuron.

Using a matching terminology, Figure 3.2 shows the diagram of a two population neural network
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Figure 3.1: Diagram of a excitatory neuron from the perspective of control engineering. Based on [16]

from the control perspective.

There has been previous work which analyzes homeostatic changes in neural networks form the

perspective of control theory. In [61], the authors explore the concept of homeostatic control in

order to study stability of recurrent neural networks. They show an analytical framework to study

the ranges of parameters which allow stable integration of control signals following homeostatic

procedures in the presence of different degrees of recurrence.

In [16], the author analyses the impact of changes in the connectivity with a sensitivity analysis

against the firing rate and power spectrum of the networks. In order to do this, she used mean

field theory to describe the ensemble behaviour of neural populations and reduce the degrees

of freedom from inter neuron connections to inter population connectivity. While Bos et al.

[16] made systematic manual variations of the connections in the networks, in this thesis I use

structural plasticity to explore different connectivity setups. Nevertheless, this work sets an

analytical basis for the numerical simulations shown in this thesis.

By applying the control signal u(t) from t0 to t f , the system will evolve from its initial state x0

following some trajectory to a final state x f . The ’performance’ of this trajectory is the difference

between a desired and the obtained measure for a heuristic involving the dynamics of the system.

In this case, the performance function is given by the homeostatic rules the system must follow.

To reach a defined target activity regime, we cannot know a priori whether an optimal admissible

control exists, which leads the system through an admissible trajectory for a given performance
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Figure 3.2: Diagram of two populations from the perspective of control engineering. Based on [16]

function. It may be impossible to find such a control history, and even if it exists, it may not be

unique or numerically stable. Structural plasticity seeks for one or more admissible trajectories

of the system. For the class of neural networks described by the dynamical equations above,

the problem of finding the exact control signals or free parameters for a simulation leading to

experimental results cannot be solved in polynomial time. However, it may still be possible to

confirm solutions in polynomial time.
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3.2.3 Structural plasticity as an optimization algorithm

Even though the structural plasticity algorithm is particularly suitable to optimize the connectivity

of a neural network to fit given dynamical properties, it could be applied to problems in other

domains. Structural plasticity is similar to simulated annealing in the sense that the strength

of the changes (rate or step size) in the parameter space changes progressively as the system

approaches the target. Usually, the growth rate of the synaptic elements in the homeostatic rule

lowers as the solution is closer, just as temperature lowers in the simulated annealing algorithm.

It works as swarms because each neuron in the network, while having individual rules, indirectly

follows and is followed by all neighboring neurons (those with synaptic contacts to it) with a

given strength (synaptic weight). Its random nature also points towards Bayesian sampling as it

has been previously highlighted in Kappel et al. [81] and Bellec et al. [11]. Structural plasticity

involves the whole process of moving the neural network from an initial state to a final state with

new dynamical features which reduces an error in the desired measure of an output. Because of

this, structural plasticity works as a homeostatic controller of the connectivity in the brain.

In their work, Kappel et al. [80] propose structural plasticity as a Bayesian inference algorithm

which, combined with STDP, allows the integration of priors into the network development

through time. Their focus on structural plasticity as machine learning algorithm is on the level

of network learning and function. In this thesis, my focus is on defining structural plasticity

as an algorithm for the generation of connectivity taking into account local optimization by

each neuron and ensemble learning achieved by collective optimization. An interesting feature

of structural plasticity as optimization algorithm is that it can be used to solve multi-objective

optimization techniques. Neurons individually seek to reach their goal by reducing the error

between their current activity and a desired activity. The synapses created between neurons define

dependencies with other objectives. If combined with synaptic plasticity, this algorithm could

provide a powerful tool to model different kinds of multi-objective optimization problems which

do not need to be directly linked to neuroscience or brain simulation.

3.3 Summary

The goal of this chapter was to provide the reader with a broad view of the available optimization

algorithms in the computer science community and link some of their characteristics to the

structural plasticity algorithm. This will be used in Chapter 7 to explore the potential of structural
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plasticity to be used as an optimization algorithm for different problems involving changes in

the input and output of dynamic processing units. I also presented structural plasticity from the

control theory perspective. This is a useful change from the biology perspective to the engineering

perspective in order to aid a systematic study of the sensitivity of the system, in this case a neural

network, to perturbations in its structure. With these concepts we will move to the next chapter

to the implementation of software tools which are designed to aid a better understanding of

simulations of spiking networks with a dynamic connectivity.
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structural plasticity algorithm in NEST

The previous two chapters provided a general overview of terms, models, and algorithms in the

fields of neuroscience, computational neuroscience, and computer science which are useful to

understand my work on structural plasticity. In this chapter, I present how the structural plasticity

model proposed by Butz and van Ooyen [22] was implemented in the neuronal network simulator

NEST [58] in order to create self organizing large scale neural networks, as described in Diaz-Pier

et al. [37]. The scalability of the implementation is evaluated and the performance of the model

on two use cases is analyzed. The implementation presented here is capable of self-organizing the

connectivity within a cortical microcircuit model consisting of 100,000 neurons in total, starting

with a fully disconnected setup. The scenario where partial information of the connectivity is

given as initial condition and an stable connectivity pattern is obtained in the end is also presented.

This chapter also discusses the changes performed to the code since its first release and into the 5g

simulation kernel of NEST. The work I present here constitutes the first step required to simulate

structural plasticity and explore its applications.

4.1 Implementation of a structural plasticity model in NEST
2.10

The implementation of the structural plasticity algorithm described in this chapter is based on the

version 2.8 of the NEST software [49] and first included in release 2.10 [17], creating a novel

possibility for automatic generation of connectivity in large-scale neuronal networks. Please

notice that in the following the mean firing rate is used instead of calcium concentration to

measure the electrical activity of the neurons as used in Diaz-Pier et al. [37] and the original

model by Butz and van Ooyen [24].

In accordance with the original formalization described in section 2.1, the algorithm consists of
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Neuron models

Electrical activity

Synaptic elements

1

2

3

Connections

Structural plasticity

manager

NEST Kernel

Figure 4.1: Diagram of the implementation of the structural plasticity model in NEST. In 1) the number of synaptic
elements is calculated depending on the electrical activity of the neuron. These calculations are optimized using MPI
and OpenMP. In 2) the structural plasticity manager gathers the number of synaptic elements per neuron using MPI
directives and in 3) creates or deletes synapses to update the connections between neurons using MPI and OpenMP.

three repeating parts which can be visualized in a general form in Figure 4.1 and described as

follows:

1. Update in electrical activity. The firing rate λ at time t is calculated by low-pass filtering

spike train data by convolving that data with an exponential decay kernel [116]: the current

firing rate λ is increased by a constant 1/τ for each spike and decays exponentially with a

time constant τ between firing times. Thus,

τ
dλ

dt
=−λ +∑

t f

δ
(
t− t f ) (4.1)

where t f are the firing times of the neuron and δ is the Dirac delta function. The constant τ

can be set by the user but the default value is τ = 10 s. The Archiving Node class, which

is the general interface for all neurons, was modified and new variables to store the of

the firing rate and the τ were added. The Archiving Node::set spiketime method was also

modified to update the firing rate according to the first case defined in Equation (2.1),

which is performed at every time the neuron spikes. The Node class was modified by

adding the method Archiving Node::update synaptic element. This method updates the

firing rate according to the second case defined in Equation (2.1). This method is called by

the Scheduler class when every synaptic update interval is reached.
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4.1 Implementation of a structural plasticity model in NEST 2.10

2. Update in synaptic elements. The first step taken in order to design and develop a framework

for synaptic elements (e.g. axonal boutons and dendritic spines) was to redefine synapses

in such a way that they can now be described using connection elements. This description

can be applied to every available neuron model in NEST for generating electrical activity.

The design also considers that the users can define their own synaptic elements and

their corresponding growth dynamics. The class SynapticElement was created in order

to represent the connection points for the neurons. The class GrowthCurve was also

created in order to define the homeostatic rules which guide the creation and deletion

of synaptic elements. Currently, the available growth dynamics are based on either a

linear or a Gaussian growth curve. The linear growth curve uses an exact integration

method to update the number of synaptic elements, while the Gaussian growth curve uses

a forward Euler integration method. The framework can be further extended by the user

to incorporate more complex element growth dynamics models. An example of such

curves is shown in Figure 4.5, where independent dynamics for each type of element in

a network of 8 populations (see use case on cortical microcircuit in Section (4.1.2)) have

been defined. Synaptic elements are used as a discrete value, the actual number of available

synaptic elements is an integer truncated from the float variable used to represent them.

The Archiving Node class now incorporates a map data structure to store the synaptic

elements. The method Archiving Node::update synaptic element takes care of updating

the number of each of the synaptic elements in the map using the value of the firing

rate at the time of the call and the corresponding growth curve. The method Archiving -

Node::decay synaptic element vacant takes care of deleting a percentage of the unused or

vacant synaptic elements on every call. Both methods are called by the Scheduler at the

end of every synapse update interval.

3. Update in connectivity. To coordinate the changes in the structure of the network, a new

StructuralPlasticityManager class was implemented. At the end of every synapse update

interval, the Scheduler calls the the newly implemented structural plasticity connectivity

manager via the Network class. The StructuralPlasticityManager determines, for each

neuron, how many vacant synaptic elements are available for new synapse formation and

how many deleted synaptic elements caused synapse breaking. Then it makes use of

the ConnBuilder in order to create or delete connections. For this, the ConnBuilder was

extended to include the new methods ConnBuilder::sp disconnect and ConnBuilder::sp -
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4 Implementation and usage of a structural plasticity algorithm in NEST

connect . Once new synapses are formed, synaptic elements are tagged from “vacant” to

“connected”. It is important to notice that when a synapse breaks due to the deletion of

one synaptic element, the counterpart remains and becomes vacant again. This remaining

counterpart can form a new synapse at the next update in connectivity. This effect preserves

the network rewiring capabilities of the original formulation. A detailed diagram of how the

new calls are integrated into the normal simulation flow of NEST can be seen in Figure 4.2.

An important feature implemented to simulate structural plasticity in NEST is the ability to

create and delete synapses during the simulation time. The implementation of the connection

management overcomes the limitation of the NEST simulator that currently models networks with

a fixed connectivity. The dynamic creation and deletion of synapses was implemented using the

connection framework released in version 2.6.0. This connection framework improved memory

usage to store connection data and reduces the computation time needed to create a connection.

The main limitation of the structural plasticity algorithm described by Butz and van Ooyen [22] is

that it requires global knowledge of the synaptic elements of the entire network. Fortunately, the

MPI global communications, also used by the NEST kernel to communicate the electrical activity

between the neurons during the simulation, do not pose a substantial bottleneck since changes

in connectivity are assumed to take place on average around a factor of 100 times slower than

changes in electrical activity. Therefore selecting a biologically realistic growth rate of around

10−4 elements/ms will result in an exchange of data that is sufficiently low rate so as not to

impact the scalability of the simulator as a whole. At the end of each connectivity update step, the

number of created/deleted synaptic elements per neuron are communicated to all MPI processes

and a global shuffle subsequently assigns the new pairs of neurons that should be connected, and

likewise chooses existing connections for deletion.

The original model from Butz and van Ooyen [22] considers distance dependency when choosing

the targets to create new synapses. In this implementation, target neurons for new synapses are

chosen in a random fashion, independently of their distance or any other factors. The probability

of two neurons connecting to each other depends solely on the number of available compatible

synaptic elements between them. When deletion occurs, a random synapse from the neuron is

chosen. There are no further considerations about the nature of the synapse or its strength.

The actual creation and deletion of the synapses is finally done in parallel using the NEST

connection framework. As stated before, a single update in connectivity should not produce a
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4 Implementation and usage of a structural plasticity algorithm in NEST

major modification of the network. That means that only a small part of the neurons should create

or delete a synaptic element between two updates in connectivity.

It is important to highlight that the usage of global communication is a characteristic of the

technical implementation of the algorithm and is not related to the functionality of the model. If

topology was to be taken into account, the ability of a neuron to connect to any other would be

limited by the constraints imposed by its relative position to others. Global communication would

still be used by the implementation, but only relevant information would be taken into account

to define the connectivity. The local homeostatic rules only define the creation or deletion of

synaptic elements per neuron. The number of available synaptic elements is transmitted globally

and the synaptic plasticity manager takes care of forming new synapses or deleting existing ones

based on this information.

The update of electrical activity and of the number of synaptic elements is performed by every

individual neuron and therefore benefits from the parallel framework already implemented in

NEST. Indeed, the NEST software has already demonstrated its high scaling properties on

supercomputer, including the JUQUEEN system [64, 93].

Finally, the Python interface of NEST (PyNEST [48]) was extended to allow users to easily

set up the structural plasticity parameters. It is important to highlight that the user can enable

structural plasticity inside the simulation and then disable it when the network has achieved a

desired connectivity pattern or activity level. The user can now also delete synapses even without

enabling structural plasticity, in a similar way as the connect functions work in NEST.

While supercomputers are required for very large-scale simulation, smaller networks can also be

run on a personal workstation or laptop according to the NEST development philosophy. This is a

fundamental advantage of this implementation of structural plasticity in terms of capacity to test

different configurations, as it provides high flexibility and portability for the neuroscientist. Later,

changes in the implementation were performed as the NEST kernel code evolved through its 2.16

release. Finally, with the arrival of the 5th generation kernel in NEST, substantial changes were

implemented in order to continue to support the functionality.

Setting up a network in NEST with structural plasticity

This section introduces the high level functions that are have been added to NEST with the

structural plasticity framework using PyNEST.

In order to set up the network using structural plasticity, one first needs to define the time at which
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4.1 Implementation of a structural plasticity model in NEST 2.10

updates in the structure of the network should take place as follows:

1 nest.SetStructuralPlasticityStatus({

2 'structural_plasticity_update_interval':

3 update_interval,

4 })

The next step is to define the synapses which can be dynamically modified by the structural

plasticity manager during the simulation. This is achieved by:

1 nest.SetStructuralPlasticityStatus({

2 'Structural_plasticity_synapses':{

3 'structural_plasticity_synapse_ex':{

4 'model':'structural_plasticity_synapse_ex',

5 'post_synaptic_element':'Den_ex',

6 'pre_synaptic_element':'Axon_ex',

7 },

8 'structural_plasticity_synapse_in':{

9 'model':'structural_plasticity_synapse_in',

10 'post_synaptic_element':'Den_in',

11 'pre_synaptic_element':'Axon_in',

12 },

13 }

14 })

Here, two types of synapses are being defined, one for the excitatory synapses and another one

for the inhibitory synapses. It is important to notice that in this definition, a name for the post and

pre- synaptic elements is also specified. This allows the structural plasticity manager to create

new synapses of the type specified in model when synaptic elements related to this label become

available. This way of setting up the dynamic synapses also allows the user to define static

connectivity constraints in the network. This can be achieved by using one synapse model which

is not registered for structural plasticity to define this fixed connectivity. For the moment, no

other constraints in connectivity like indegree or outdegree ranges can be specified. Nevertheless,

thanks to its flexible design, the model can be extended to add new constraints.

The next step involves the specification of the growth curves for the synaptic elements defined

above. This is done as follows:

1 growth_curve_e_e={

2 'growth_curve':gaussian,

3 'growth_rate':0.0001,
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4 Implementation and usage of a structural plasticity algorithm in NEST

4 'continuous':False,

5 'eta':0.0,

6 'eps':5.0,

7 }

This is an example of a Gaussian growth curve where the minimum firing rate required to start

generating synaptic elements is η = 0.0 Hz, and the desired firing rate is set to ε = 5 Hz. Finally,

the rate at which the synaptic elements will grow is ν = 1× 10−4 elements/ms. Independent

growth curves can be created for each synaptic element.

Now that the growth curve has been defined, it can be assigned to the synaptic elements that each

neuron will be able to grow. After that, the neurons can be created and NEST must be notified

that these synaptic elements are linked to the neurons:

1 synaptic_elements = {

2 'Den_ex':growth_curve_e_e,

3 'Den_in':growth_curve_e_i,

4 'Axon_ex':growth_curve_e_e,

5 }

6

7 nodes = nest.Create('iaf_neuron',number_excitatory_neurons)

8 nest.SetStatus(nodes,'synaptic_elements',synaptic_elements)

Here the creation of neurons pertaining to the excitatory population is shown. Each neuron has

three types of synaptic elements, one dendritic excitatory, one dendritic inhibitory and one axonal

excitatory.

The final step is to enable structural plasticity and simulate:

1 nest.EnableStructuralPlasticity()

2

3 nest.Simulate(t_sim)

A complete PyNEST example which describes how to create a network with two populations,

enable structural plasticity and simulate the network is distributed together with the NEST

simulator.
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4.1.1 Scalability

Type of synaptic element η ε ν

Excitatory neurons, excitatory elements 0.0 5.0 1.0×10−4 elements/ms

Excitatory neurons, inhibitory elements 0.0 5.0 1.0×10−4 elements/ms

Inhibitory neurons, excitatory elements 0.0 20.0 4.0×10−4 elements/ms

Inhibitory neurons, inhibitory elements 0.0 20.0 1.0×10−4 elements/ms

Table 4.1: Parameters for the homeostatic growth rules for each type of neuron and synaptic element in the two
population network model.

To assess the scalability of the framework, I designed strong and weak scaling tests of the structural

plasticity implementation. For all tests, networks with 80% excitatory and 20% inhibitory neurons

were created. The parameters of the homeostatic rules for synaptic elements in the simulation

were defined as shown in Table 4.1 on page 51. The decay constant was set to τ = 10000.0 for all

neurons. The post synaptic amplitude of individual synapses was set to 1.0 mV. External input

was provided using a Poisson generator with a frequency of 104 Hz. The post synaptic amplitude

of individual synaptic input was set to 0.01mV. The simulation was run for 100s, with a step size

for the numerical integration of 0.1 ms. The updates in the network connectivity were performed

every 10 ms. These values were chosen as they proved to be one parameter combination that

allowed for stable self-organizing growth of the network towards the homeostatic equilibrium

(See section 3.3.1 for additional comments on the selection of this parameter set).

Weak scaling tests were performed for networks with 5,000 neurons per node and settings of 1, 2,

4, 8 and 16 nodes, each node using 28 cores. Strong scaling tests were performed with a network

of 100,000 on the same hardware configurations as the weak scaling tests. Only physical cores

were used, no simultaneous multithreading was enabled. A hybrid optimization approach was

chosen, in which MPI is used for communication between nodes and OpenMP for intra node

communication. All measurements were performed on the JUROPATEST cluster, which provides

up to 70 nodes (T-Platforms V210s Blades), each with 2 x Intel(R) Xeon(R) CPU E5−2695 v3

(Haswell) with 14-core processors (2.30GHz ) and 128GB DDR memory, running with Scientific

Linux release 6.5 (Carbon).

While the update in electrical activity has been proven to scale up to 109 neurons, it is important

to verify that updating the number of elements and the deletion and formation of synapses does

not restrict the expected scaling, at least in the desired regime of up to 106 neurons. Updates

in synaptic elements and connectivity make use of MPI’s ÁllGatherćommunication scheme
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4 Implementation and usage of a structural plasticity algorithm in NEST

to communicate the data. This collective communication is also used by the NEST kernel to

communicate the spiking activity between the neurons during the simulation. Although AllGather

implements communication between all processes, it is very unlikely that a huge amount of data

has to be communicated when a reasonable growth rate of around 10−4 elements/ms because

updating the number of synaptic elements and the connectivity are very slow processes compared

to the update in electrical activity.
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Figure 4.3: Results of the scalability tests performed with structural plasticity. A) Efficiency as a function of the
number of nodes for 5,000 neurons in the weak scaling test. The network was allowed to grow synapses following the
structural plasticity rules during a simulation of 100 s of biological time. B) Simulation time (red curve) as a function
of the number of nodes for a network of 100,000 neurons and in the strong scaling test. The blue curve indicates ideal
linear scaling. C) Efficiency as a function of the number of nodes for a network of 100,000 neurons in the strong
scaling test. The peak scaling efficiency is marked with a star.
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Weak scaling

Figure 4.3A shows the efficiency, defined as the speed-up divided by the number of nodes, of the

implementation as measured by a weak scaling test with 28 OMP threads running on each node.

It is visible that, as the number of neurons increases, so does the total number of synapses. The

presence of new synapses leads to an increase of communication of structural changes between

neurons, which leads to a decrease in the efficiency of the simulation.

Strong scaling for a network of 100,000 neurons

Figure 4.3B shows the computation times of the strong scaling tests for a network of 100,000

neurons, and Figure 4.3C shows the efficiency of the strong scaling test. The peak efficiency is

achieved with 4 nodes and 112 cores. These results show supra-linear scaling for this network. In

Plesser et al. [120], supra linear scaling for biological neural networks on NEST was demonstrated

due to increasingly efficient caching.

These results show that the introduction of the new structural plasticity framework into NEST

has no impact in the scalability of the simulation up to a network size close to that of a cortical

column if a suitably low growth rate is selected.

4.1.2 Performance on the use cases

The main objective of the structural plasticity framework is to provide the user with a tool to

model the dynamic creation and deletion of synapses between neurons of a neural network in

a scalable manner. There are several applications in which structural plasticity can be used. In

this section I detail two use cases as examples. The first use case shows the basic functionality

of the framework and how it can be used to study the relationship between connectivity and

activity. I also show how this simple set-up can model critical development periods in the network

connectivity. The second example is a more complicated case with several populations, where the

objective is to show how connectivity can be self-generated in a network by using the synaptic

element growth curves as connectivity fitness rules. All simulations were carried out with NEST

version 2.8.0 extended by the structural plasticity implementation. As already mentioned, this

implementation was then made public in the NEST release 2.10.
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4 Implementation and usage of a structural plasticity algorithm in NEST

A simple two population network

In this initial use case, I generate a network with a total of 1000 leaky integrate and fire neurons,

80% excitatory and 20% inhibitory. Parameters for the growth rules of each type of neuron and

synaptic element are the same as detailed in Table 4.1 on page 51. The connectivity in the system

was allowed to evolve using a Gaussian growth curve for 3000 s, with an integration step of

0.1 ms and a delay of the connectivity update equal to 100 integration steps. The simulations

were done on a workstation with 8 Intel core i7-4770@3.4 GHz CPUs with openSUSE 13.1.

A

D E

B C

F

Figure 4.4: Upper panel: Firing rate and numbers of connections as functions of time in a simple two population
network. The cyan and black curves show the firing rate measured in the inhibitory and excitatory populations,
respectively. The paler horizontal lines indicate the corresponding target levels ε . The blue and red dashed curves
indicate the total number of connections in the inhibitory and excitatory populations, respectively. Vertical gray
lines indicate the times of the snapshots displayed in the lower panel. Lower panel (from A to F): Evolution of the
connectivity in the two population network visualized using MSPViz (see Section 4.1.3). Images show half of the total
amount of neurons in the network, where triangles represent excitatory neurons and circles inhibitory neurons. Red
lines indicate excitatory connections while blue lines indicate inhibitory connections.
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The upper panel of Figure 4.4 shows the evolution of the firing rate and total number of connec-

tions. The lower panel shows the evolution of the connectivity in the network using a visualization

tool called MSPViz, specifically designed to visualize structural plasticity. For more on this

tool see Section 4.1.3. During the first 30 s of the simulation, mostly excitatory connections are

created (Figure 4.4A). This allows the firing rate to increase in both populations. When the target

mean electrical activity is reached and overshoots in the excitatory population (Figure 4.4B), the

number of excitatory connections starts to decrease (Figure 4.4C) until the desired firing rate

is achieved and stabilized in the excitatory population. However, both pre- and post-synaptic

elements in the inhibitory population are still being created because it has not yet reached its

target mean electrical activity. It is important to remember that neurons have no information

regarding the global status of the network and the evolution of their synaptic elements depends

solely on the predefined homeostatic local rules. At around 40 s (Figure 4.4D), an increment in

excitatory connections is triggered by the enhanced levels of inhibition. This leads to a complete

rewiring of the network (Figure 4.4E). The trend is preserved until the mean electrical activity in

the inhibitory population is also reached (Figure 4.4F).

In this network setting, the inhibitory population has a higher level of activity than the excitatory

population. As previously mentioned, the probability of two neurons connecting depends only on

the number of available compatible synaptic elements between them. At the start of the simulation,

the inhibitory population must offer more post-synaptic elements for excitatory synapses than the

excitatory population, otherwise the excitatory population would reach equilibrium first and cease

to create excitatory pre-synaptic elements. As a result, not enough excitatory synapses would be

created to the inhibitory population and it would never reach the desired level of activity. The

structural plasticity parameter space is broad and a certain amount of exploration is required to

discover combinations for the growth of each type of synaptic element which can take the network

to equilibrium. However, there is in general no unique combination of parameters leading to

equilibrium, and different equilibrium combinations will typically produce different connectivity

patterns. At this point, biological constraints must be applied to choose between them.

The cortical microcircuit network

In this second use case, I create a four layer network based on the model of the cortical microcircuit

proposed by Potjans and Diesmann [122]. Each layer contains one inhibitory and one excitatory

population of leaky integrate and fire neurons. In the simulations presented here, the network
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4 Implementation and usage of a structural plasticity algorithm in NEST

starts with the same number of neurons in each population as in the previous study, but without

any synaptic connections. For each population, I define a level of desired mean electrical activity

based on experimental literature and a growth curve which defines the dynamics of the variation

in the number of pre- and post-synaptic elements. These are Gaussian shaped curves with two

intersections with the x-axis that determine the minimum amount of electrical activity required to

form any synapse (η), and the target mean firing rate for the neuron (ε) as described in Chapter 2.

The curves are illustrated in Figure 4.5.

In the first example, I tune the growth rate to achieve an stable growth regime for the network
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Figure 4.5: Growth curves for each synaptic element in each layer of the cortical microcircuit model. The growth
curves define the rate at which synaptic elements are created depending on the firing rate of the cell. Red curves are for
neurons in the excitatory population. Blue curves are for neurons in the inhibitory population. Solid lines are for the
excitatory synaptic elements and dotted lines represent inhibitory synaptic elements. The vertical purple line defines
the target firing rate for excitatory neurons and the vertical cyan line represents the target firing rate for inhibitory
neurons. It is important to highlight that all synaptic elements of the same neuron must have a growth curve with the
same target firing rate, otherwise equilibrium will never be reached.
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connectivity. This means that the structural plasticity algorithm will stop creating and deleting

synaptic connections when the desired mean activity is reached, and that this mean activity is

actually reached on average in each population. In a second example, the growth rate provided

leads to an unstable connectivity pattern, where the target mean electrical activities are never

reached by all populations. A table containing the parameters for both cases can be seen in Table

4.2 on page 57.

Parameter Stable case Unstable case

Growth curve type Gaussian Gaussian

Growth rate excitatory dendritic 0.0001 0.0001

Growth rate excitatory axonal 0.00018 0.0001

Growth rate inhibitory dendritic 0.0001 0.0001

Growth rate inhibitory axonal 0.00025 0.0001

η excitatory 0.0 0.0

η inhibitory 0.0 0.0

ε in [Hz] - excitatory L23 dendritic 0.5 0.5

ε in [Hz] - inhibitory L23 dendritic 2.0 2.0

ε in [Hz] - excitatory L23 axonal 0.5 0.5

ε in [Hz] - inhibitory L23 axonal 2.0 2.0

ε in [Hz] - excitatory L4 dendritic 2.6 2.6

ε in [Hz] - inhibitory L4 dendritic 4.5 4.5

ε in [Hz] - excitatory L4 axonal 2.6 2.6

ε in [Hz] - inhibitory L4 axonal 4.5 4.5

ε in [Hz] - excitatory L5 dendritic 5.5 5.5

ε in [Hz] - inhibitory L5 dendritic 5.0 5.0

ε in [Hz] - excitatory L5 axonal 5.5 5.5

ε in [Hz] - inhibitory L5 axonal 5.0 5.0

ε in [Hz] - excitatory L6 dendritic 3.5 3.5

ε in [Hz] - inhibitory L6 dendritic 5.9 5.9

ε in [Hz] - excitatory L6 axonal 3.5 3.5

ε in [Hz] - inhibitory L6 axonal 5.9 5.9

Table 4.2: Parameters used for simulations of the cortical microcircuit. Values for both the stable and unstable cases
are listed.

A third example was run to illustrate a more common situation where there are some assumption

about the connectivity in a network and where the structural plasticity framework can help meet

more refined activity constraints. Here I used the original model of Potjans and Diesmann [122]

and enable the structural plasticity after an initial stabilization period of 30 s.
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Figure 4.6: Evolution of the mean firing rate in each layer of the cortical microcircuit model. Pale horizontal lines
indicate the target concentration of the corresponding population. A) excitatory populations in layers II/III (red),
IV (blue), V (black) and VI (orange). B) inhibitory populations in layers II/III (brown), IV (cyan), V (gray) and VI
(purple).

Simulations were performed on JUROPATEST (70 nodes with 2×14-core processors Intel(R)

Xeon(R) CPU E5− 2695 v3 (Haswell) at 2.30 GHz and 128 GB DDR memory, running with

Scientific Linux release 6.5) and JURECA (with 260 compute nodes with Intel Xeon E5−2680

v3 Haswell CPUs with 2×12 cores per CPU, 128 GB of RAM per node and running on CentOS

7 Linux distribution).

In the case of the cortical microcircuit model, Figure 4.6 shows the changes in firing rate, while

Figure 4.7 shows the evolution of connectivity among layers as the simulation runs. In this case,

parameters which lead to stable network connectivity were chosen. Reaching stable connectivity

in the networks takes around 700 biological seconds of simulation, which takes 24 hours using 25

nodes and 24 cores per node in the JURECA cluster to simulate. It is visible that during the first

20−30 s of simulation, connectivity highly increases on every layer. After the initial overshoot,

a smoother approximation towards the desired activity levels is achieved. As seen only from

the firing rate diagram, the evolution of the network appears to be quite stable. Regardless, the

connectivity plots show a continuous dynamical reorganization. While neurons on some layers

might start deleting connections due to excess of activity, the post-synaptic neurons must then

create new connections in order to compensate for missing activity in case they have not reached

their set point yet. This leads to a continuous search for compensating excitation and inhibition

which must satisfy the requirements of all 8 populations. From Figure 4.7 it can be seen that

outgoing connections from excitatory populations on layers IV, V and VI are quite stable. On the
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Figure 4.7: Evolution of connectivity in the microcircuit model resolved by source and target population. Panels on the
left and right illustrate efferent connections from excitatory and inhibitory populations, respectively, while the vertical
arrangement indicates the layer of the source neurons. In each panel, the numbers of connections to each of the eight
population in the model are shown as a function of time. The colour of the curves indicates the target population, as in
Figure 4.6: connections to excitatory populations in layers II/III (red), IV (blue), V (black) and VI (orange) are shown
as solid curves, and connections to inhibitory populations in layers II/III (brown), IV (cyan), V (gray) and VI (purple)
are shown as dashed curves.
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other hand, layer II/III exhibits the highest amount of reorganization, both from the excitatory and

inhibitory populations. This might be due to the fact that their reduced target levels of activity

might be easily influenced by variations in all other layers. Inhibitory populations on all layers in

general exhibit a higher degree of reorganization during the whole simulation.

The search space of connectivity parameters for this model of the cortical microcircuit is large as

each setup requires 64 values to be defined. If a brute force exploration would be performed on

these parameters by simulating each combination for 1 biological second, only 1−2 values per

parameter could be considered before more biological seconds would be simulated than using

the structural plasticity approach. When adequate synaptic element growth curves are defined,

the structural plasticity framework allows a progressive exploration of the space in which the

dynamics of the the 8 populations are balanced at every step, thus providing an efficient way to

find stable connectivity combinations.

Figure 4.8 presents a comparison between the proportional values of connectivity among layers

between the results obtained from the simulation using structural plasticity and the original

values reported by Potjans and Diesman. The average error in percentage of connectivity is of

1.058±1.175.

A second case was also explored, in which parameters lead to unstable network activity are

chosen. Figure 4.9 shows the evolution of connectivity among layers and Figure 4.10 shows the

changes in firing rate in each layer for this scenario. Overshoots in the connectivity, are originated

by a choice of higher rate in the creation of synaptic elements. The system behaves as a feedback

control system, with a delay which is defined by the time between updates in connectivity and the

synaptic element creation rate (see Chapter 3). The synaptic element growth rate determines the

steepness of the growth curve, and influences the speed at which control changes are made. The

instability in the connectivity is reflected in the firing rate, never reaching the desired levels. A

stable setting involves finding a suitable balance between the speed in the creation of excitatory

and inhibitory connections related to the desired level of activity for each layer.

In the use case where the initial conditions in connectivity were those specified in the original

model of Potjans and Diesman, the network was simulated without plasticity for an initial

period of 30 s in order to allow the firing rate reach an initial stable value. The evolution of

the firing rate in all layers after the structural plasticity algorithm was enabled can be seen in

Figure 4.11A and Figure 4.11B. The stability point is reached a lot faster than in the scenario with

no initial connections, at around 400 s. A final simulation was set in which the connectivity was

specified with a 10% error margin from the original setup reported by Potjans and Diesman. The
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Figure 4.8: Comparison of the normalized connectivity in the microcircuit model between the results obtained with the
structural plasticity framework (red) and the values reported by Potjans and Diesmann [122] (blue). The radius of the
circle represents the linearly normalized value of the percentage of connections between layers.

evolution of the firing rate in all layers after plasticity was enabled can be seen in Figure 4.11C

and Figure 4.11D. The structural plasticity algorithm is able to find a suitable balance between

excitation and inhibition. The initial overshoot in electrical activity is a reflection of the initial

stronger reconfigurations of the network connectivity. Not all setups will become stable or find a

solution, this depends on the initial conditions, the desired set points, the shape of the growth

curve and the growth rate.

4.1.3 Static visualization of simulation results

The lack of other restrictions in the generation or deletions of new connections may produce

scenarios which are not biologically realistic. The emergence of biologically relevant networks is

essential for its scientific applications and thus methods to monitor, control, correct or discard
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Figure 4.9: Evolution of connectivity through time for each layer in the cortical microcircuit model with an unstable set
of parameters. Panels on the left illustrate connections incoming from excitatory populations. On the right, connections
incoming from inhibitory populations. Rows show connections incoming from layers II/III, IV, V and VI from top to
bottom respectively. On every panel, red solid lines target the II/III excitatory population, brown dotted lines target
the II/III inhibitory population, blue solid lines target the IV excitatory population, cyan dotted lines target the IV
inhibitory population, black solid lines target the V excitatory population, gray dotted lines target the V inhibitory
population, orange solid lines target the VI excitatory population and purple dotted lines target the VI inhibitory
population.
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Figure 4.10: Evolution of firing rate in each layer of the cortical microcircuit model with an unstable set of parameters.
A) shows the firing rate in the excitatory populations. Red curve represents layer II/III, blue curve layer IV, black layer
V and orange layer VI. B) shows the firing rate in the inhibitory populations. Brown curve represents layer II/III, cyan
layer IV, gray layer V and purple layer VI.

unrealistic configurations are of essence. MSPViz [21] is a software tool developed to analyze post-

simulation data of the progressive connectivity generation in the network. Within the framework

of my thesis, I defined the requirements and use cases for the development of this visualization

tool. With it, the scientist can explore the network at detail as well as the generation and deletion

of specific synapses. The user can look for abnormal connectivity patterns such as nonfunctional

hubs or detect interesting behavior as the emergence of critical periods. The scientist can identify

the origin of these patterns by inspecting the dynamics of the inhibitory/excitatory synaptic

element creation/deletion.

Identifying and analyzing critical periods of plasticity

Identification of critical periods of plasticity, its study and analysis is one of the most important

topics for structural plasticity. A critical period is a phenomenon where strong rewiring, creation

and deletion of synapses take place in a neural network. Critical periods are tightly linked to

learning and healing and seem to be more frequent during development [69]. These periods of

increased plasticity can be triggered by inhibition imbalances in a network. In order to illustrate

the usability of MSPViz, I have chosen the simple model with two populations of point neurons

with a target average activity of the inhibitory population is set to 20 Hz while the target average

activity in the excitatory population is set to 5 Hz.

Using MSPViz the user can load, explore, analyze and understand the data generated by NEST
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Figure 4.11: Evolution of firing rate in each layer of the cortical microcircuit model with partially pre-connected
initial conditions. Pale horizontal lines indicate the target concentration of the corresponding population. Left panels
show excitatory populations in layers II/III (red), IV (blue), V (black) and VI (orange). Right panels show inhibitory
populations in layers II/III (brown), IV (cyan), V (gray) and VI (purple). A) and B) show the scenario where the
network was started with the connectivity as specified in the original work by Potjans and Diesman. C) and D) show
the same scenario but with a 10% error in the initial connectivity setup.

simulations using structural plasticity. The data output by the simulation describes the existing

connections in the network at every 1000 steps of simulation. It also contains information about

the available, empty and used synaptic elements of each type in each neuron. MSPViz is designed

to allow a thorough inspection of the changes in the synaptic elements of each neuron as well as

the synapses it forms with other neurons. This is done by using an abstract representation of the

morphology of each neuron. For an example, see Figure 4.12.

Once the software has loaded the simulation data, the user can navigate through it using different

views. A generic view of the network allows easy inspection of the dynamics of the connectivity.
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4.1 Implementation of a structural plasticity model in NEST 2.10

The user can ”play” the simulation and observe how connections are created and deleted among

neurons (see Figure 4.13). There is the option to select just a group of neurons and make more

detailed analysis. In this use case, the user can also observe how the network goes through periods

of critical plasticity which impact its final structure. The simulation shows how inhibition triggers

a rewiring of the network around step 35. It is also possible to identify the particular point at

which excitatory to excitatory connections start to grow again after the initial settling period (1).

Identifying hubs

Nonfunctional hubs are neurons with a large number of connections but a very low firing rate.

This means that they do not take active part in the dynamics of the network. These hubs are

undesirable in a biologically realistic setup. They can emerge when the homeostatic rules set

for excitatory and inhibitory synaptic elements are not well defined. Using MSPViz, the user

can select the nonfunctional hubs, visually identified by a high number of connections and a low

activity, for further inspection as seen in Figure 4.14. We can see that, for this neuron, starting

cycle 35 (where the critical period of rewiring in the network occurs) a inhibitory/excitatory

race starts. Here, excitation is matched and slightly overtaken by inhibition. This leads to more

synaptic elements being created of both types and, as a consequence, firing rate goes down until

the neuron turns into a non functional hub. Figure 4.15 shows an even more detailed view on a

nonfunctional hub neuron with the dynamics of its connections and allows the exploration of the

network using the synaptic map. The user can clearly identify the cascade of events which lead to

the loss of functionality of the neuron. The user can also use the visible connections to explore

the effects of these changes on neighboring neurons.

4.1.4 Taking into account distance dependency in simulations

The implementation described in this chapter neglects the distance between neurons as a factor

for deciding the targets during the generation of new connections. This is an important feature

highlighted in Chapter 2, Section 2.3.2 and also part of the original model of structural plasticity

suggested in Butz and van Ooyen [22]. Calculating the distance between all possible targets

and adding this information to the target selection is a computationally intensive process. The

calculations increase quadratically with the number of neurons. There have been some attempts

to solve this problem. One is explained in Rinke et al. [125], where the authors propose the

progressive segmentation of the space into squares, and the distance calculations only performed

65



4 Implementation and usage of a structural plasticity algorithm in NEST

on the centroids of such partitions. This changes the complexity of the problem from O(N2) to

O(NlogN). Other approaches, like the one explained in Bogdan et al. [15], reduce the potential

space of targets a priori, assuming that long distance synapses will not be possible.

In this section I want to discuss another way to take distance into consideration. This way of

dealing with the problem can be achieved in the current implementation of NEST. This solution

is only applicable for networks without explicit spatial position, such as the majority of example

models in NEST, among which the two networks discussed in this chapter. In NEST, distance can

be linked directly to the delay of the synapse, and thus one can create sets of plastic synapses with

different delays. The modeler then can assign slightly higher growth rates to synaptic elements

linked to faster synapses. By doing this, ’closer’ connections will be proportionally favored to

long distance connections.

This approach has its limitations, in that there should be consistency in the delays of the connec-

tions between two neurons. Making sure that a neuron can not have connections with two different

delays to the same neuron would promote this consistency from bottom up. The development

of an algorithm which controls this spatial consistency within the network could enable a low

complexity solution for self-generating networks with spatial distribution as well.

4.1.5 Changes in the implementation of structural plasticity for the 5th
generation kernel of NEST

As the NEST kernel changed from 2.10 up to 2.16 there were no substantial changes in the

implementation of structural plasticity. However the 5th generation kernel (5G) [78] included

a radical modification in the way connections are implemented. Communication of spiking

events in the 5G kernel is based on an AllToAll communication scheme instead of an AllGather

strategy as the previous kernel. This means that events are exchanged between processes in a

directed way, reducing the transmission of useless information to non interested targets. The new

communication strategy also involved a change in the definition of synapses. In the previous

versions of NEST, synaptic information was only stored in the post-synaptic neuron but in the

5G kernel both the pre- and post-synaptic neurons contain information about the synapse. This

allows the directed exchange of event information to take place. Synaptic information in 5G is

allocated in the post-synaptic process as two resizable three dimensional structures which hold

information about the synapses and about the sources. This information is indexed using the

target thread id and the type of synapse. On the pre-synaptic process, there is a three dimensional
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structure which holds the information about the targets indexed by source thread and source local

id. For more details on the implementation please refer to section ”3.1. Two-Tier Connection

Infrastructure” of [78]. The process of building up connectivity in 5G is performed in two steps.

The first step generates all the post-synaptic data infrastructure. The second step takes place at

the beginning of the simulation and includes the transmission of synapse data from the targets to

the sources in order to generate the pre-synaptic connectivity data structures.

The most important change introduced by 5G regarding structural plasticity is the duplication

of information between both sides, and the fact that synapses are ordered by source in the post-

synaptic data structures. This means that any removal or addition of synapses involves reordering

the data structure in order to preserve the right pointers towards sources. The current version

of 5G includes the creation and deletion of synapses during simulation and is able to reach a

slightly better performance than 4G in networks with less than a 100 MPI processes. The impact

of regenerating the corresponding communication data structures after the creation or deletion of

synapses can be hidden by a low frequency of updates in the connectivity. This means that just

like with 4G, 5G requires large update intervals compared to the simulation time step in order to

have good performance. Its scalability to higher numbers of processes is still work in progress.

The new communication scheme in 5G opens up the possibility to implement several changes in

the original algorithm in order to make faster transmission of the synaptic element data among

processes which is currently a time consuming task within the algorithm.

4.2 Discussion

In this chapter I have described the implementation of a framework of structural plasticity for the

neural network simulator NEST. As shown in [37], the framework is scalable and can be used to

model the dynamical creation and deletion of synapses inside a large scale network guided by

simple homeostatic rules. This work also presents some use cases for the framework and some of

its potential applications. Researchers can now use structural plasticity in NEST to generate the

connectivity of a network from scratch, defining homeostatic rules, in form of synaptic element

growth curves, which may vary according to their needs. Some examples of research work done

using this framework are Gallinaro and Rotter [54] and Lu et al. [98]. The shape of the growth

curve defines the speed with which new synaptic elements are created, and as a result, defines

the acceleration at which calcium is stored inside the neuron. The relationship between the

growth speed at certain firing rate of excitatory and inhibitory elements is fundamental to achieve
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stable setups under the model of structural plasticity. As is has been shown, some parameter

combinations lead to unstable activity in the network. There are cases where the desired average

electrical activity will never be reached by the system. In other cases the average electrical

activity will oscillate continuously or suddenly go out of bounds. This relationship depends also

on the size of the network and the neuron model used. As a consequence, some care is required

in navigating the parameter space in order to achieve desired results.

The example of the two population network illustrates how this framework can be used to under-

stand the interaction between activity and the creation of synapses. The behaviour observed in

the simulation can be used to model how inhibition triggers critical periods of connectivity during

development of neural networks [68]. During this window, external stimuli can also be used to

shape the formation of the new connections. Together with the performance measurements, these

results show that this implementation of structural plasticity is suitable to study the development

of connectivity patterns inside a neural network in an efficient and scalable manner.

In the specific case of the cortical microcircuit presented in Diaz-Pier et al. [37] it is possible

to see some similarities and differences between the results obtained by simulating with the

structural plasticity framework and the data reported in Potjans and Diesmann [122]. One of

the most visible differences is the smaller amount of recurrent connections generated in the

simulation for layer 2/3. This layer has a very low target electrical activity, which is initially

almost reached by external input. This means that very few synapses are required to reach this

target. This fact limits the creation of synapses for this layer. Note that the results shown in this

chapter were obtained only by defining target activity levels; no other connectivity constraints

were specified. A more elaborate simulation could incorporate tailored growth curves for each

layer, and implement additional connectivity restrictions which promote recurrent connections

and other connectivity patterns that do not emerge naturally from the current approach.

Another visible difference is that the excitatory population of layers 5 and 6 show a higher number

of connections than the ones shown in the original work. On the other hand, connections from

and to the inhibitory population of layer 5 and layer 2/3 are well fit. Except from connections

between the inhibitory and excitatory populations of layer 4, connections from and to layer 4 are

also well predicted.

In this work I describe the implementation of a framework which can be used to study structural

network dynamics. The focus of this work is on the technical implementation. It was not the

scope of this chapter to perform a deep analysis of the biological results that can be obtained using

this framework. However, some examples of its applications are used to highlight its capacities
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and limitations. For more complex applications a further analysis please refer to Chapter 6 and

Chapter 7. The structural plasticity framework gives researchers flexibility to explore complex

connectivity dynamics by extending the synaptic elements growth rules. As this implementation

is integrated into NEST, simulations using structural plasticity can also be combined with other

features available in the simulator. For example, the user may take into account dynamic synaptic

weights by mixing this framework with synaptic plasticity. The framework can also be further

extended using the current topology framework in NEST in order to constrain connectivity by

relative position.

In this section I also showed how the MSPViz software can be used to explore the changes in

the network produced during a simulation with structural plasticity. MSPViz provides means

to analyze the information produced by the simulations and assess if the parameters used are

producing biologically relevant information. It also allows the user to better understand the

relationships between the activity of the neurons and the impact of changes on an abstract

representation of their morphology.

The structural plasticity algorithm is able to solve the complex balance of interaction between

layers with different levels of electrical activity when partial information of the connectivity is

available. This result is very promising, as it shows that given the right growth rules, it would

now be possible to reconstruct connectivity inside a network without having exact anatomical

information. As a conclusion, this approach represents a novel and useful technique to close the

current gaps in information about the connectivity in certain regions of the brain.
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5 Steering and interactive visualization of
structural plasticity

In the last chapter I discussed the characteristics of structural plasticity as a controller of neural

networks by means of structural changes. In this chapter, I focus particularly on connectivity

generation using structural plasticity in combination with interactive steering and visualization.

Simulation models in many scientific fields can have non-unique solutions or unique solutions

which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be

reached by multiple different trajectories. Neuroscience is no exception. Often, neural network

models are subject to parameter fitting to obtain desirable output comparable to experimental

data. Parameter fitting without sufficient constraints and a systematic exploration of the possible

solution space can lead to conclusions valid only around local minima or around non-minima.

Finding suitable connectivity configurations for neural network models constitutes a complex

parameter search scenario as well as a relevant and still unsolved problem in computational

neuroscience.

In Nowke et al. [114] we developed an interactive tool for visualizing and steering parameters in

neural network simulation models. The development of the tool has been guided by several use

cases – the tool allows researchers to steer the parameters of the connectivity generation during

the simulation, thus quickly growing networks composed of multiple populations with a targeted

mean activity. The flexibility of the software allows scientists to explore other connectivity

and neuron variables apart from the ones presented as use cases. With this tool, we enable

an interactive exploration of parameter spaces and a better understanding of neural network

models and grapple with the crucial problem of non-unique network solutions and trajectories. In

addition, we observed a reduction in turn around times for the assessment of these models, due to

interactive visualization while the simulation is computed.
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5.1 Exploration of the parameter space of neural network
connectivity

Neuronal models and neural mass models, usually based on coupled systems of differential

equations, contain many degrees of freedom which determine the dynamics of the system. In

a neural network, these models are interconnected and the strength of the interactions between

elements can also change through time.

Since biological evidence to specify a complete set of parameters for a neural network model is

often incomplete, conflicting, or measured to an insufficient level of certainty, parameter fitting

is typically required to obtain outputs comparable to experimental results (see, for example,

López-Cuevas et al. 97, Schuecker et al. 134, Zaytsev et al. 168, Schirner et al. 133). And even

if we had infinite experimental data available, Cubitt et al. [30] have shown that, regardless of

how much experimental data is acquired for a general system, the inverse problem of extracting

dynamical equations from experimental data is intractable: “extracting dynamical equations from

experimental data is NP hard”. This implies that in neural networks, the problem of finding the

exact free parameters for a simulation leading to results matching experimental measurements

cannot be solved in polynomial time, at least under the current understanding of computational

complexity.

However, the parameter space can be explored with forward simulations in order to discover the

system’s characteristic behaviors and thus limit the search space to a computationally tractable

sub-problem in an educated manner. The definition of these subspaces can then be the basis

for robust – and non-arbitrary – parameter determination (in other words, mathematically valid

performance function minimization). In fact, given the known mathematical characteristics

of the dynamics of neuronal and neural mass networks, investigators should characterize the

solution spaces of sufficiently complex networks and models before selecting what they propose

are statistically diagnostic simulation trajectories. In practice, this rarely happens, even though

parameter fitting without sufficient constraints and a rigorous exploration of the possible solution

space can lead to conclusions valid only around local minima or around non-minima. Researchers

frequently stay within arbitrary regions in the parameter space which show interesting behaviors,

leaving other regions unexplored.

Visual parameter space exploration has been successfully applied in several key scientific areas,

as detailed by Sedlmair et al. [136]. Combined with interactive simulation steering, the time for

obtaining optimal parameter space solutions can be significantly reduced [104, 105]. Whitlock
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et al. [161] present an integration of VisIt [27], a flexible end-user visualization system, into

existing simulation codes. This approach enables in situ processing of large datasets while

adding visual analysis capabilities at simulation runtime. A similar approach has been suggested

by Fabian et al. [53] for ParaView [65].

Coordinated multiple views (CMVs) as proposed by North and Shneiderman [110] and Wang

Baldonado et al. [157] can assist in visual parameter space exploration. CMVs are a category of

visualization systems that use two or more distinct views to support the investigation of a single

conceptual entity. For example, a CMV system can display a 3D rendering of a building (the

conceptual entity) alongside a top-down view of its schematics — whenever a room is selected

within the schematic overview, the 3D rendering will highlight the room’s location. Roberts [126]

shows that CMVs support exploratory data analysis by offering interaction with representations

of the same data while emphasizing different details. Ryu et al. [129] present CMV systems

that have been successfully utilized to uncover complex relationships by enabling users to relate

different data modalities and scales, and assisting researchers in context switches, comparative

tasks, and supplementary analysis techniques. Additional examples of such systems are presented

by North and Shneiderman [111], Boukhelifa and Rodgers [19], and Weaver [158].

Visual exploration of neural network connectivity, e.g., by displaying spatial connectivity data

in 3D renderings, has previously been employed by scientists to better understand and validate

models as well as to support theories regarding the networks’ topological organization [108, 127].

The infinite solution space of suitable connectivity paths and end configurations for neural

networks makes fully automatic parameter fitting ‘hard’, since it involves satisfying multiple

contradictory objectives and qualitative assessment of complex data, as explained by Sedlmair

et al. [136]. Kammara et al. [79] conclude that for multi-objective optimization problems,

visualization of the optimization space and trajectories permits more efficient and transparent

human supervision of optimization process properties, e.g., diversity and neighborhood relations

of solution qualities. They also point their work toward interactive exploration of complex spaces

which allows expert knowledge and intuition to quickly explore suitable locations in the parameter

space.

In order to address efficient but rigorous parameter space exploration, in Nowke et al. [114]

we have reported the development of an interactive tool for visualizing and steering parameters

in neural network simulation models. In this work, we focused particularly on the generation

of connectivity, since finding suitable connectivity configurations for neural network models

constitutes a complex parameter search scenario. The generation of local connectivity is achieved
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5.2 Connectivity generation in neural networks

using structural plasticity in NEST [17] following simple homeostatic rules described in Butz

and van Ooyen [24]. The concepts presented in Chapter 3 are used to specify the problem

from the control theory perspective, as variations in the structure system control the transition

in its dynamics from an initial to a final state following a defined trajectory. The tool allows

researchers to steer the parameters of the structural plasticity during the simulation, thus quickly

growing networks composed of multiple populations with individually targeted mean activities.

The flexibility of the software allows the exploration of other connectivity and neuron variables

apart from those presented as use cases. CMVs are used to interactively plot firing rates and

connectivity properties of populations while the simulation is performed. Moreover, simulation

steering is realized by providing interactive capabilities to influence simulation parameters on the

fly.

The development of this tool was guided by two use cases where visual exploration is key

for obtaining insights into non-unique dynamics and solutions. The first use case focuses on

the generation of connectivity in a simple two population network. Here the generation of

connectivity to achieve a desired level of average activity in the network can be achieved by

taking multiple trajectories with different biological significance. The second use case is inspired

by a whole brain simulation described in Deco et al. [35], where the exploration of non-unique

connectivity solutions is desired to understand the behavior of the model.

Applying this approach, an intractable inverse problem can be reduced to a tractable subspace,

and the requirements for statistically valid analyses can be determined. Visualization can simplify

a complex parameter search scenario, helping in the development of mathematically robust

descriptions amenable to further automated investigation of characteristic solution ensembles.

Observing the evolution of connectivity, especially in cases where several biologically meaningful

paths may lead to the same solutions, can be useful for a better understanding of development,

learning and brain repair. This work is a first step toward developing new analytic and computa-

tional solutions to specific inverse problems in neuronal and neural mass networks. Our software

platform promotes rigorous analysis of complex network models and supports well-informed

selection of parameters for simulation.

5.2 Connectivity generation in neural networks

Previous research by Sporns et al. [139] has found that the assembly of anatomical connections

among neurons, also known as the connectome, plays a fundamental role in explaining the

77



5 Steering and interactive visualization of structural plasticity

high-level activities of the brain. However, the exact relationship between anatomical links and

the functions performed by the brain has aspects that remains unclear. An attempt to model

biologically realistic circuits immediately runs into the problem that the structure of the brain

has yet to be comprehensively characterized. Existing connectomic datasets are incomplete or

contain large uncertainties [10]. Conversely, information about the average electrical activity in

specific brain regions is easier to acquire either directly, e.g., electroencephalogram, extracellular

electrode recordings of spiking activity and local field potential, or indirectly, e.g., functional

magnetic resonance imaging and optogenetics/calcium imaging.

Variations in the physical elements, which constitute a neural network, can be modeled using

synaptic and structural plasticity. Structural plasticity, a model of the dynamic creation and

deletion of synapses in a neural network, is desirable from two main perspectives. The primary

purpose is to study the neurobiological phenomenon of morphological transformations that a

neuron or set of neurons undergoes through time, leading to the creation or deletion of synapses.

This phenomenon is part of brain development, learning and repair. However, a promising

secondary role already introduced in Chapter 4 is the automatic generation of neuron-to-neuron

synapses to compensate for gaps in experimental connectivity data. Using structural plasticity,

a network can autonomously generate synapses to achieve a stable desired profile of electrical

activity, a measure that is experimentally more accessible than detailed connectivity data. By

progressively and slowly changing the connections between neurons in the network and the

weight of these connections for all regions, the structural plasticity algorithm is able to find stable

configurations within the desired firing rate profile.

As alreday mentioned in Chapter 4, the structural plasticity implementation in NEST is based on

the model proposed by Butz and van Ooyen [24] and described in detail in Diaz-Pier et al. [37].

In this Chapter I use a Gaussian curve as described in Equation (2.2) and the properties of the

plasticity model as described in Section 2.3.1. The original model by Butz and van Ooyen

[24] uses intracellular calcium concentration as a proxy for the mean firing rate. The examples

included in this Chapter reference directly the mean firing rate in the homeostatic rule. In the

simulations shown in this chapter, the form of this curve is not biologically motivated, but is a

homeostatic meta-rule being used to numerically solve for networks consistent with fixed firing

rates.

As already explained in Chapter 4, the firing rate is calculated by low-pass filtering spike train

data by convolving that data with an exponential decay kernel. This calculation is internal to

NEST and independent of the tool discussed in this chapter. When the convolution technique
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isn’t suitable, an alternate mean firing rate can be computed using a user-defined window size

applied to binned spike trains.

As discussed in Chapter 3, synaptic and structural connectivity can be seen as multi-objective

optimization algorithms which take the network from an initial state to a final state where

something has been learned or a new activity pattern has been enabled. Partial information

about the connectivity can be combined with information about average activity in the system to

initialize models of structural plasticity filling the gaps in the constraints of the system. However,

finding suitable connectivity configurations and generation trajectories for neural network models

is non-trivial, which is exacerbated by the nature of experimental data. The known experimental

data often fails to sufficiently constrain the model to parameter subspaces that can be completely

explored with reasonable resources within reasonable time frames.

Enabling structural plasticity for a single population to reach a targeted activity level is usually

unproblematic, fast, and relatively insensitive to the choice of parameters such as ν and η .

However, a big challenge arises when structural plasticity is involved simultaneously on several

interconnected populations with differing levels of activity. Even small changes in the connectivity

of each population will impact the activity of all others to which it is connected, leading to a

propagated destabilization. Another parameter which has a great impact on stability is the update

interval at which synapses can be deleted or created. As in any control system, the delay between a

control change and the response of the system strongly determines the capability of the controller

to keep the system in a stable region.

In Diaz-Pier et al. [37], the simulations were performed statically, meaning no steering was

possible during runtime. Due to the large combination of parameters to be controlled and

variables to be observed during the search process, brute-force parameter search based on static

simulation proved to be insufficient to obtain stable states. The selection of adequate parameters

to define and constrain the growth of network connectivity, especially for multi-population

or coupled networks, is not trivial as some values might lead to unstable setups. Therefore,

modifying the characteristics of the growth behavior (ν and η see Figure 2.2) for each population

and the update interval during simulation becomes crucial for finding a suitable stable state

for multi-population networks. In this chapter the terms ”population” and ”region” are used

interchangeably to refer to groups of neurons. The term chosen depends on the use case. In

general, a region contains one or more populations while populations specify groups of neurons

of the same type. Connectivity exists both within and between populations and regions. All

types of connectivity can be subject to plasticity or remain fixed after setup. The software can be
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modified to take into account any number of populations per region, arbitrary types of neurons,

and any number of regions. The user can also specify different types of connections between

the same populations and apply various structural plasticity rules to each of them. The user

can choose between a variety of connectivity modalities in NEST, ranging from one-to-one,

all-to-all, fixed in-degree, fixed out-degree, fixed total number of connections, and pairwise

Bernoulli. However, structural plasticity support is only currently implemented for one-to-one

and all-to-all connectivity. Other modalities can be used, but structural plasticity will not affect

these connections.

In the context of a simulation with evolving connectivity, the dynamic nature of the parameter

search workflow derived from the two use cases presented later requires:

W1: The simultaneous analysis of several changing variables by an expert.

W2: Comparing the level of activity of several populations simultaneously.

W3: Changing simulation parameters at any moment in each population of the network.

W4: Snapshotting a time point in the simulation and storing the connectivity state.

W5: Loading a previously stored connectivity state.

This workflow can potentially be assisted with an interactive tool enabling scientists to explore

and steer such simulations within the space of possible trajectories. To achieve this goal, a

scientist needs interactive feedback on the number of connections and the level of electrical

activity in all populations.

More specifically, the initial design phase helped identify the following visualization requirements

(R1-R5), followed by the requirements for simulation steering (R6-R10). These requirements

hold for the presented use cases:

R1: Deal with at least 2×N representations of time series data (electrical activity and connec-

tivity), where N is the number of populations in the simulation.

R2: Interactively plot the firing rate for selected populations. The firing rate from the last

simulation step should be displayed as soon as its computation concludes.

R3: Interactively plot connections for each population. As for the firing rate, the latest total

connections per population should be displayed.
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R4: Enable the selection and filtering of populations for plotting and further investigation. The

means to select and filter populations of interest must be provided.

R5: Have a well defined way to distinguish populations in the plot. Since multiple populations

can be selected for comparison, visual clutter needs to be avoided.

R6: The user interface must allow for the modification of each population’s growth rate ν and

apply each value in the simulation.

R7: The user interface must allow for the modification of a population’s minimum electrical

activity η and transfer the new value to the simulation engine.

R8: The user interface must allow for the modification of the update interval and transfer its

change to the simulator.

R9: Control the NEST simulation from within a graphical user interface. Provide the means to

start or stop the simulation, trigger the saving and loading of a network state, and allow

convenient access to the visualizations.

R10: Enable loading and saving of the current network state (connections and user controlled

parameters).

5.3 In situ visualization and steering of connectivity
generation

To enable navigation through the connectivity generation parameter space, in Nowke et al. [114]

we developed a tool enabling interactive steering and visualization (ISV). The development

was driven by the need to rapidly reach stable configurations of connectivity in multiple tightly

connected populations. We then extended the tool to support further use cases which are presented

later. The tool allows for the visualization of trajectories that the system undergoes during

simulation by showing the changes in the observable states of the network (specifically the activity

and connection properties of the network). In addition, this tool allows for the modification of the

control signals for the generation of connectivity, i.e., the plasticity algorithm’s parameters.

The developed tool realizes a CMV system by applying principles of event-driven architectures

as presented in Abram and Treinish [3], Michelson [107], and Nowke et al. [112]. The devel-

opment of the tool was organized into four stages: first, the simulation script was modified to
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retrieve electrical activity and connectivity values; second, the visualization components and user

interfaces were developed; third, processing of parameter changes from the user interface was

added; and finally, the simulation script was optimized to run on supercomputers.

The tool works by the combination of two components: a visualization framework and a simula-

tion instrumentation API. Event-communication is realized with the ‘nett’ messaging framework

[113], which is an open source C++ network library facilitating data transfer between application

boundaries based on the publish and subscribe pattern.

5.3.1 Simulation instrumentation

Interactive steering relies on a bidirectional communication between the visualization and steering

interfaces to a simulator. In our setup, activity levels and connectivity from populations computed

by NEST are transferred via event communication over a network connection to the visualizations,

where users can modify parameters of the simulation model, which in turn are fed back to the

simulator. The values of interest are the firing rate of each population which serves as a proxy

for electrical activity and a population’s total connections formed due to connectivity generation.

These are the observable states of the network. Steering parameters are the minimum firing rate

η and the growth rate ν of each population, the update interval for the connectivity generation,

and finally, basic commands to NEST such as ending or resetting the simulation, and storing or

loading the current network state.

To retrieve firing rates and total connections, instrumentation of the simulation script is required.

To this end, the simulation acquires the latest firing rates and total connections of each population

in each iteration and publishes these as events. Then, parameter changes from the graphical

steering interfaces, asynchronously retrieved during the model’s computation, are applied and the

next iteration is continued.

To adapt a NEST simulation to a different use case, the first step consists of determining what

data needs to be transferred from or to the simulation. The next step consists of creating an

event definition schema for the data to be transferred if one is not yet present. Then, slots for

communicating this data definition can be created: out-slots for publishing data and in-slots to

retrieve it. Once slots are created, in-slots need to be connected to their corresponding out-slots.

Any in-slot should be used in a thread to asynchronously retrieve data without blocking the

computation of the simulation. Once an event is received by a slot, its data needs to be applied in

the next iteration of the simulation. In a complementary fashion, out-slots send the simulation
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results for each iteration by retrieving values of interest from the simulation and filling the slot’s

event and sending it. The same methodology is used for visualizations or graphical user interfaces

which are use case specific.

5.3.2 ISV system overview

The ISV system consists of six services:

1. Control panel: It serves as an entry point for users to start the investigation of structural

plasticity. The user interface facilitates changing the update interval (R8) and allows the

simulation to be paused or restarted (R9). In addition, it provides a graphical interface for

loading and saving the network state (R10).

2. Region selector: This service provides an abstract vision of the network structure and

allows a way to select the different regions or populations which conform the network

model.

3. Activity plot: The activity plot service shows the state of the activity for the selected

regions/populations as it changes through the simulation.

4. Connectivity plot: The connectivity plot service shows the total number of connections for

the selected regions/populations as it changes through the simulation.

5. Color editor: Allows the user to specify the colors and styles for the plotting services.

6. Manipulation of structural plasticity parameters: The user interfaces for η and ν are the

primary means of steering the simulation for the parameter space exploration (R6 and R7).

This interface allows for the modification of the control signals, enabling the structural

plasticity algorithm to take the system from its current state to a desired final state (see

Figure 5.1, bottom center). Both steering interfaces are designed as separate standalone

services that can be started within the Control Panel.

Figure 5.1 shows a snapshot of the ISV system. Please refer to the supplementary material of

Nowke et al. [114] for a video which explains the detialed usage of these tools.
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5 Steering and interactive visualization of structural plasticity

Figure 5.1: Firing rate in spikes/s of simulated brain regions (upper left) and total connections (upper right) are
retrieved while a NEST simulation is performed. The time is measured in number of update intervals. The steering
interfaces (Control Panel and growth rate manipulation; bottom left and center) allow interactive parameter space
exploration which is synchronized with the current simulation. The growth rate (in ∆ synaptic elements/ms) for each
region can be controlled using the corresponding slider. The region selector (far right) provides the means to filter the
brain regions of interest depicted in the plots. The legends provided in each plot denote the current selection from the
region selector along with the color used to identify the corresponding curve. Specifically in the example shown, the
labels e0 - e10 and i0 - i5 identify the average firing rate for excitatory and inhibitory populations in network regions
0-10 accordingly. Labels r0 - r10 identify total outgoing connections from network regions 0-10. Please refer to
Section 5.4.2 for more details on the network model used in this example.

To re-use previously found connectivity patterns in neighboring points of the parameter space,

we also implemented a save and load functionality (R10). The current values for η and ν are

saved for each population as well as the connectivity update interval. All current connections

between all neurons are also saved. These connections are defined by a source neuron, a target

neuron and the synapse model which links them. Finally, the total number of connections for

each population are exported to a file which can be used in the next phase of the simulation loop.
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Figure 5.2: Previous method of visualizing simulations: visualization of the simulation as performed before the
presented tool was developed. The figure shows the evolution of the average firing rate for each region (solid curves)
and numbers of outgoing connections (dashed curves) from each region using structural plasticity in a non-interactive
(static) experiment. Each color represents a different population. In this static approach, a large number of independent
simulator runs are performed over a predetermined, non-interactive parameter space and then displayed with ad hoc
scripts. Mapping the non-physiological solutions with saturated firing rates onto regions of the parameter spaces is
highly non-trivial (compare approach with Figure 5.1).

In this section, I present the results obtained from two use cases in connectivity generation. For

the first use case, the results of running structural plasticity simulations before the interactive

visualization tool was developed were previously reported in Diaz-Pier et al. [37, Figure 5,

section 3.3.1]. Figure 5.2 shows the equivalent output for the second use case, reflecting the

previous visualization approach. Due to the large number of unlabeled curves, the inability to

focus on data for particular populations and the lack of interactivity with the visualization, using

this static approach makes it very difficult for the user to identify the evolution of connectivity

in relation to parameter changes. Moreover, a new simulation run is required whenever any

parameter needs to be changed. Even when some regions have easily reached the target activity

of 3 spikes/s, for some set-ups it is extremely challenging to identify suitable trajectories that

lead to stable solutions for all populations.

In this type of simulation, the system is constrained by connectivity data and desired activity levels

obtained from experimental measurements. However, these constraints still allow the system

to reach non-physiological states such as saturating at high firing rate values (see Figure 5.2).

Moreover, the system may follow several trajectories to reach these implausible states, indicating
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Parameter Value
Capacitance of the membrane Cm 0.25 nF

Resting potential VL −65 mV

Threshold membrane potential Vthr −50 mV

Reset membrane potential Vres −65 mV

Refractory time τref 2 ms

Growth rate excitatory synaptic elements 0.0001 elements/ms

Growth rate inhibitory synaptic elements 0.0004 elements/ms

Table 5.1: Network parameters for the first and second use cases.

that the system is under-constrained. On the other hand, there are many admissible trajectories

which take the system to biologically plausible states. Biologically meaningful trajectories should

be identified by heuristics, expert knowledge, and further experimental measurements gained

through a deeper understanding of the parameter space to which the neural circuit is subject. At

first glance, it is not clear how to explore the parameter space in these complex systems, as the

large number of variables and long simulation times make it unfeasible to find stable populations

through a brute force approach, and no heuristic is available to reduce the dimensionality. Without

expert knowledge in a closed loop setup, admissible trajectories are fundamentally hard to find.

In the following sections, I demonstrate the challenges of parameterizing network models and

the potential of the ISV tool to address them. I have performed all experiments with NEST

2.10.0 [17] and its Python language bindings which are described in Eppler et al. [48], Zaytsev

and Morrison [167]. The complete NEST scripts used in this work can be found in a GitHub

repository which can be found in the supplementary material of Nowke et al. [114].

5.4.1 Two population model

In this use case, I create a model with two populations of point neurons, one excitatory and one

inhibitory as shown in Figure 5.3a. The whole network contains 1000 leaky integrate-and-fire

neurons with exponential shaped post-synaptic currents, of which 80% belong to the excitatory

population and the rest to the inhibitory population. Parameters for the point neurons are listed

in Table 5.1 on page 86. All neurons receive independent background excitatory Poisson noise

at a rate of 10 kHz. At the beginning of the simulation, no connections between neurons are

present. The system is allowed to create both excitatory and inhibitory connections (red and blue

dashed arrows, respectively, in Figure 5.3a), using the structural plasticity framework in NEST.
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Figure 5.3: Evolution of firing rate and connectivity for the two population example. a) Abstract view of the model
consisting of two populations, one excitatory (red) and one inhibitory (blue) with respectively excitatory connections
(red arrows) and inhibitory connections (blue arrows), both controlled by structural plasticity; b) Gaussian growth
curves mapping current firing rate to growth rates (see Figure 2.2); c) growth rate dynamics; d) evolution of the firing
rate; and e) evolution of the total number of connections during the simulation. Colors in (b)–(e) are as in (a).
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The weights for the created synapses are 1 and −1 respectively. The evolution of the firing rate

(Figure 5.3c) and the growth of connections (Figure 5.3c) is regulated by two homeostatic rules

defined by Gaussian curves, as shown in Figure 5.3d. The target average activity of the inhibitory

population is set to 20 Hz while the target average activity in the excitatory population is set

to 5 Hz. Figure 5.3c shows the evolution of the growth rate for excitatory synaptic elements in

both populations during a simulation. These dynamics originate from the fixed firing rate curves

shown in Figure 5.3b. The structural plasticity algorithm uses that relation at every simulation

step to decide how many connections to create or delete.

The evolution of the connectivity generation can be guided by modifying the growth rate and

shape of the Gaussian curve linked to each type of connection. Figure 5.3d and Figure 5.3e

show an example of this process. In this use case, an interesting feature to observe using the

visualization and steering tool is the path to the solution. With the configurations used here,

one can see how allowing faster growth of inhibition triggers an overshoot in the generation of

excitatory connection to compensate. As a result, a rewiring of the system is obtained. These

paths to the solution can be linked to onsets of critical periods in learning and healing or by

external stimulation [69]. By regulating the speed of the creation of connections in the system,

scientists can explore different paths to solution where the relationship between excitation and

inhibition changes through time.

Figure 5.4 shows the evolution of growth rate (synaptic elements/s), firing rate (Hz) and connec-

tivity (total number of connections) for six examples of the multiple trajectories and connectivity

configurations that the network can show. All examples start with an initial growth rate of 0.0001

synaptic elements/ms. Figure 5.4a shows a smooth growth similar to Figure 5.3, but where the

control signals have been modified to reduce the overshoot in the inhibitory population. That is

done by reducing the initial growth rate to 0.00005 at iteration 8 (mark a.1). Figure 5.4b shows

an example of a simulation where the control signals for growth start with aggressive growth

values, producing a constant oscillatory behavior. That is achieved by changing the growth rate

from 0.0001 to 0.0010 at iteration 38 (mark b.1) and then to 0.0030 at iteration 80 (mark b.2).

Following these signals, the connectivity update interval is increased to 500 ms (from the standard

length of 100 ms), which produces a big oscillation, triggering a rewiring of the network (mark

b.3). Finally, growth is reduced to a slower pace, which helps the system settle at a stable state.

This reduction is achieved by setting the growth rate to 0.00005 at update 161 (mark b.4). The

final connectivity is very similar to the one reached in Figure 5.3. This example shows a different

trajectory which reaches the same final state.
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Figure 5.4: Evolution of growth rate (top), firing rate (middle) and outgoing connections (bottom) for six different
trajectories (a-f) in the two population model use case, excitatory (red) and inhibitory (blue). Vertical dashed lines
correspond to manual changes using the graphic interface to the growth rate (top curves) or update interval (at b.3)
control variables. All other simulation parameters are held constant for all runs, including initial growth rate. Please
see the main text for a discussion of the features of each set of trajectories.

89



5 Steering and interactive visualization of structural plasticity

Figure 5.4c illustrates very fast initial growth by changing the growth to 0.004 at iteration 46

(mark c.1). Then, a sharp reduction in growth when the system oscillates near the target firing

rate. The growth rate is changed to 0.0018 at iteration 98 and further down to 0.0007 at iteration

103 (marks c.2 and c.3 accordingly). Figure 5.4d shows a case which seems stable in terms of

activity, but is unstable in terms of connectivity, as it exhibits a constant race between excitation

and inhibition in the connectivity to maintain the target activity. The growth rate is set to 0.001 at

iteration 24 (mark d.1), to 0.0056 at iteration 52 (mark d.2) and to 0.0020 at iteration 78 (mark

d.3). Figure 5.4e shows a trajectory which is not biologically meaningful. This network has been

built only from excitatory connections by modulating the growth of connections very carefully

around the target activity. Here, we have defined a growth curve that does not allow the creation

of inhibitory connections unless the activity is above the desired firing rate. Finally, in Figure 5.4f,

we see a trajectory which is not admissible (not biologically meaningful) because the network

is taken to an artificially high firing rates before it settles back to its target. At iteration 17, the

growth rate is set to 0.002 (mark f.1) and then slowly reduced to 0.00056 at iteration 60, to 0.0002

at iteration 80 and finally to 0.00005 at iteration 90 (marks f.2, f.3 and f.4 accordingly). This

graph shows how a network can traverse biologically inadmissible trajectories and still reach the

target activity.

These results show that several instantiations of the same system using different dynamics lead

to the same target activity but different connectivity patterns. Visualization and steering is

fundamental for producing, observing, studying and cataloging these behaviors in the network.

See Bahuguna et al. [9] for an example of the same phenomenon exhibited in a more complex

network. Thus using target activity as a tuning parameter without this kind of exploration leads

to selecting one of these network connectivity states arbitrarily. The resulting model may not

be representative of the kinds of networks that produce this activity, or of the target system to

be modeled. In other words, the target activity does not uniquely identify a network, or even a

contiguous volume of parameter space, but is the property of a distribution of distinct networks

distinguished by parameters that are not the direct targets of research — this class of inverse

problem is degenerate. The network structure may be critically path-dependent, dependent upon

parameters which are stochastic sequences (external control variables) or even dependent upon

numerically unstable parameter functions. Simple networks such as the one shown in this example

are frequently used in computational neuroscience but rarely with consideration to the careful

characterization of the parameter spaces. Thus, in the absence of analytical methods to identify

alternative solutions in the parameter space, steered visualization is a highly effective method for
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Parameter Excitatory Neurons Inhibitory neurons
Number of neurons Nr 160 40

Capacitance of the membrane Cm 0.5 nF 0.2 nF

Membrane leak conductance gm 25 ns 20 ns

Resting potential VL −70 mV −70 mV

Threshold membrane potential Vthr −50 mV −50 mV

Reset membrane potential Vres −55 mV −55 mV

Refractory time τref 2 ms 1 ms

Table 5.2: Network parameters taken from Deco et al. [35] for each region.

producing, observing, comparing and cataloging network configurations.

5.4.2 Whole brain simulation

This use case is inspired by the previous study of Deco et al. [36]. The experiment consists of a

whole brain simulation using 68 interconnected brain regions, each of which represented by a

spiking network containing 200 conductance-based leaky integrate-and-fire neurons, as illustrated

in Figure 5.5a. The original work by Deco et al. uses a Dynamic Mean Field Model (DMFM)

originally developed in Wong and Wang [163].

The coupled non-linear stochastic equations of the DMFM describe the behavior of mean-field

neuronal regions and their influence on each other:

ṡ = s/τs +(1− s)γH(x)+σννν(t)

H(x) = (ax−b)/
(

1− exp
(
−d(ax−b)

))
x = wJNs+GJNCs+ I0

(5.1)

where H represents the population firing rate function; s is the vector representing the average

gating variable for each region; a, b, d, and σ are scaling parameters; γ and τs are kinetic

parameters; ννν is the stochastic input vector; w is the local excitatory recurrence; JN is the synaptic

coupling; G is the general coupling factor; C is the connectivity matrix; Io is the effective external

current; and x is the state variable vector for the regions. This model is applied in Deco et al. [35]

to describe a system dominated at the measured time frame by NMDA gating, while AMPA and

GABA gating are neglected as ‘fast’ variables. For a complete description and analysis of the

model, see Wong and Wang [163] and Deco et al. [36].
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5 Steering and interactive visualization of structural plasticity

Figure 5.5: Use case 1 inspired by Deco et al. [36] whole brain model. a) Abstract representation of the whole
brain model including 68 regions. A subset of the regions is selected (pink area). The zoom-in view of one of the
regions shows the abstract model of each region, consisting of two populations, one excitatory (red) and one inhibitory
(blue). Inhibitory connections to excitatory neurons in the same region (blue dashed arrow labeled J) are subject
to structural plasticity. b) Activity Plot of selected regions (0− 10) as a function of biological time. Regions are
numbered from 0-67. Tags eX and iX identify curves for excitatory and inhibitory populations in the Xth region. A
legend (upper left) indicates the current selection. The number following the colon after the tag is the region’s firing
rate during the last simulation step. Vertical dashed lines separate sections of the simulation with differing values of
the global connectivity coupling (see Section 5.4) , G = A) 0.5; B) 1.0; C) 1.5; D) 2.0. The vertical dashed lines are
superimposed on this plot and are not part of the Activity Plot service. Increases to the global coupling parameter lead
to an increase in the strength of the connections between regions. The firing rate spikes initially as a response to this
change; in response, structural plasticity modifies connectivity according to the homeostatic rules until the firing rate
stabilizes again closer to the target firing rate.
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Figure 5.6: Total number of connections for selected regions (0− 10) as a function of biological time. Colors are
synchronized between this plot and the Color Editor. Vertical dashed lines separate sections of the simulation with
differing values of the global connectivity coupling (see Section 5.4), G = A) 0.5; B) 1.0; C) 1.5; D) 2.0. Regions are
coupled and numbered from 0-67. Tag rX identifies the curve for the total number of connections corresponding to the
Xth region.

Here, I apply a mapping from the DMFM to a network of point neurons. In this simulation,

each region contains two populations, one excitatory (80% of the total neurons in the region)

and one inhibitory (20%). In this case, neurons in NEST do not represent biological neurons but

processing units whose mathematical description at population level is equivalent to the elements

which comprise the DMFM. The initial parameters used to set up the network are taken from

Deco et al. [35] and detailed in Table 5.2 on page 91. For a complete explanation of the model

and its motivation, see Deco et al. [35] and Wong and Wang [163].

Recurrent excitatory connections have a strength of 1.4 pA, while recurrent inhibitory connections

have a weight of −1.0 pA. Each neuron per region initially receives 160 excitatory connections

from the local excitatory population. Only inhibitory connections are created during the simulation

(blue dashed arrow tagged J in the region zoom in of Figure 5.5a) since we are only interested in

substituting the feedback inhibition control algorithm described by Deco et al. [36]. The inter-

regional connectivity (black lines between regions in Figure 5.5a) is specified from structural data

obtained by DTI, which results in a connectivity matrix C, but further regulated by the general

coupling parameter G, a multiplicative factor. This enables the linear modification of the strength
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5 Steering and interactive visualization of structural plasticity

of the connections without altering the ratio of connectivity among regions. Thus, the total weight

of the connections between regions is equal to G ·C pA. Each connection between regions is

made between a single representative neuron in each excitatory population. Connections between

regions are only excitatory. Additionally, all neurons receive independent background input from

a Poisson generator producing spike trains with a rate of 11.9 kHz.

I followed the procedure described by Deco et al. [36] for the generation of synaptic activity,

substituting the feedback inhibition control used in that paper with the interactive exploration

method. The strength of the background input was tuned to achieve a firing rate of 3 spikes/s for

the excitatory population and 8 spikes/s for the inhibitory population when regions were isolated

(without inter-region connections). In Deco et al. [36], an iterative tuning strategy was used

to determine the intra-region inhibition for the DMFMs required to produce an activity profile

consistent with experimental observations. The key insight inspiring our approach is that finding

the intra-region inhibition can be mapped on to determining the number of inhibitory connections

required to produce the same activity pattern in a multi-area spiking neuronal network. Finding

the right amount of inhibition per region which satisfies all the dependencies is still a hard

multi-objective optimization problem, especially if the space cannot be interactively explored.

This is demonstrated in Figure 5.2, which shows the result of simulating one static parameter

setup for the connectivity generation programmatically.

In this setup, the tool was used with different values for the inter-region global coupling factor G.

A complete view of the visualization and steering tool for this use case is shown in Figure 5.1. By

using the tool, we detected that as G grows, it becomes more difficult to bring all regions to the

desired activity state, and the standard deviation of the average firing rate increases as well. G has

this impact because any change in one region due to G has a strong impact on all other regions

dynamically reacting to the change in G. This effect is visible in Figure 5.5 and Figure 5.6, where

the time it takes for all regions to stabilize increases as the value of G grows.

We are also able to detect which regions are more crucial for stability, since they have a higher

inter-connectivity to other regions. Figure 5.7 shows a comparison of the evolution of the firing

rate and outgoing connections of four regions. Each peak shows an increment in the global

coupling value G by 0.5, starting from a base value of 0.5. Regions 25 and 63 show large

oscillations due to their high connectivity with multiple other regions. Conversely, regions 0 and

10 rapidly reach a stable state even for high values of G. This capacity for detailed inspection

allows the researcher to verify that all regions reach the desired average activity while the

simulation is running, and thus drastically decreases turn-around times to research this behavior.
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Figure 5.7: Number of connections (top) and firing rate (bottom) shown in comparison of four regions (0,10,25,63).
Vertical dashed lines separate sections of the simulation with differing values of the global connectivity coupling, G =
A) 0.5; B) 1.0; C) 1.5; D) 2.0. Regions are numbered from 0-67. Tags eX and iX identify curves for excitatory and
inhibitory populations in the Xth region. The number at the side of the tags denotes the current value of the average
firing rate for each region.
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Figure 5.8: Connectivity update rule employed in the algorithms proposed in Deco et al. [36] and Schirner et al. [133],

where a fixed value is added or subtracted iteratively to the inner inhibitory connectivity until convergence to the

desired firing rate is achieved in each simulated region.

The search algorithms proposed in Deco et al. [36] and Schirner et al. [133] are based on an

update pattern which (in the same terms as the algorithms used in this work) can be described

by a fixed step update around the target activity, as shown in Figure 5.8. The effectiveness of a

fixed search approach in the connectivity parameter space depends mainly on two factors. First,

the size of the correction step. If the step is too small, it will take too long to reach the target

activity if the initial conditions are not close to the solution. If the step is too large, the system

will oscillate because the corrections are too coarse. Second, the effectiveness is dependent on

the accuracy. The speed to find a solution is inversely proportional to the desired accuracy. The

correction step should also be smaller than the accuracy, otherwise the system may oscillate

indefinitely around the final target state without ever reaching a state with the desired accuracy. In

summary, the ability of the search algorithm to find a solution depends on the initial conditions,

the size of the update step and the desired accuracy. The approach I present here allows the size

of the update step and the speed with which changes take place to be adapted during simulation.

This solves the problem of the dependency between step and accuracy and also allows the system

to potentially find a solution from a broader range of initial conditions due to the capacity to

increase the resolution of the search as the target state is approached.
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In addition to the advantages in speed and use of computational resources which our expert-steered

approach confers over brute force parameter search (and which may, in fact, be computationally

intractable), the process of steering allows the researcher more insight into the system. Whereas

in the first use case, the primary finding was that multiple connectivity configurations can result

in the same activity profile, in the second use case I am able to identify which regions are most

critical for the overall network stability, as illustrated in Figure 5.7. Thus, interactive visualization

can support the researcher in sensitivity analysis, which is essential for understanding the main

driving parameters of the model and for making better inferences about the relations between

parameters and function. As with the multiple configurations observed in the first use case, it is

rare to encounter a network modeling study in computational neuroscience where a sensitivity

analysis has been carried out (but see Bos et al. [18] for a counter example.)

5.4.3 Usage of the tool

In this section, I summarize the main steps required to use the tool to take the system from its

initial state to a final connectivity setup where the target mean activity values are achieved. In the

following, I make reference to the requirements listed in Section 5.3. The first step during the

simulation steering is to determine which regions have one or more of the following characteristics

(R2-R5):

• the electrical activity is far from the target activity, and there is no tendency of the system

to correct for this error (or the correction is too slow);

• the electrical activity oscillates around the target activity and the oscillations are of equal

or higher amplitude in each cycle;

• or the number of connections does not converge even though electrical activity is around

the target activity.

This is achieved using the visualization tool by observing the firing rate and connectivity plots.

Figure 5.5 shows the evolution of the firing rate for the first ten regions of the brain model.

Figure 5.6 shows the changes in connectivity which are guided by the homeostatic growth rules

defined for the structural plasticity algorithm. Each curve in the plot is uniquely identified by

color and linked to a population or region, thus enabling the assessment of the three above listed

characteristics. Reaching the targeted stable state is indicated when all firing rate curves converge
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to the target activities while the connection curves flatten to horizontal lines. This allows the user

to simply and effectively identify which regions deviate from the target state and to correct the

structural parameters according to the following criteria:

• If the actual electrical activity is far away from the target activity, the growth rate ν for that

region should be increased (R6).

• If the actual electrical activity oscillates around the target activity, the growth rate ν for that

region should be decreased in small increments and the value of η should be reduced to

decrease the rate of change in the number of created and deleted synaptic elements around

the target point ε (R6-R7).

• If the number of connections does not converge, highly interconnected regions should be

identified and the growth rate ν should be modified down in all of them (R7). In this case,

the update interval can also be modified to a smaller value to have a faster response of

the control changes in the connectivity (R8). A shorter update interval allows better and

smoother control, but impacts the performance of the simulation.

The resulting network state can be saved and used later as a starting point for other parameter

combinations, thereby minimizing the need for further computations using similar values of the

global coupling term (R9-R10).

5.4.4 Implementing further use cases

Using an event-driven architecture, the ISV framework provides a convenient way for domain

scientists to extend the tool to their needs. This tool can be used with any neuron and any synapse

model in NEST, except for gap junctions. By using the scripts provided in the supplementary

material of Nowke et al. [114] as templates, the user can easily change the neuron and synapse

model to explore the impact of these variations. An instrumentation manual which specifies the

steps required to integrate the tool with other network models implemented in NEST can be

found as part of the supplementary material. The instrumentation manual provides instructions

based on examples for NEST, but the tool can be adapted to other simulators providing a Python

interface by replacing the corresponding functionality. However, if the simulator does not provide

an interface to Python, instrumentation will require substantial development effort by the user.

Table (5.3) provides estimates for the complexity of adapting the nett messaging library to

different use cases. The complete tool and the underlying messaging framework is open source.
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Challenge Solution Complexity
Change network topology Change number of popula-

tions
simple

Increase the size of the net-
work

Increase the number of neu-
rons in the simulation script

simple

Retrieve additional parameter Create new event definition medium
Add a new model parameter Create new event definition medium
Connect different simulators
with Python interface

Create new event definition
for the specific simulation val-
ues

medium-hard

No Python / C++ environment None hard

Table 5.3: Estimation on the complexity to adapt the nett messaging framework to different steering and visualization
use cases.

5.4.5 Simulating on a supercomputer

To leverage the power of supercomputers to reduce turn-around times for parameter space

exploration, the simulation scripts can be adapted to use MPI. In this section, I show an example

of adapting the whole brain simulation use case described in Section 5.4.2 to supercomputers.

To ensure that each process is in sync with all steering commands, one process (rank 0) serves

as master. Only this master process establishes a connection to the visualization front-ends and

processes their steering events. Then parameter synchronization is conducted via synchronization

barriers with the remaining compute nodes. The master process is responsible for gathering the

electrical activities and total connections from all other compute nodes to finally send these to the

visualization front-ends.

After all the simulations had been parallelized, the tool was adapted to cope with the super-

computing environment. A challenge of the current usage conditions of most supercomputing

environments is their batch-mode operation where users submit jobs which are granted compute

time after a possibly long delay; interactive supercomputing is still a work in progress as outlined

in Lippert and Orth [95]. Since our tool relies on a network connection to NEST, the IP-address

of the compute-node running the simulator is unknown a priori. To circumvent this issue, the

supercomputer’s global file system was used: when the simulation is granted compute time, the

node’s IP-address is obtained and written to disk. Subsequently, all visualization services use this

configuration file and connect to the given address. However, one limitation of this approach is

the need to start the simulation first.
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Figure 5.9: Execution time as a function of the number of compute nodes for varying numbers of neurons per
population: 50, 100, 200, 400, 800, and 8,000; curves shaded from light to dark. Dotted lines indicate ideal scaling,
while solid lines represent experimental results. a) The change in time consumed per core added. Each point is the
difference in the execution time divided by the difference in cores for consecutive points in (b); points are placed at the
midpoint between the source measurements. b) The execution time for each simulation as the number of cores are
varied; for the simulation with 8,000 neurons per populations, measurements were made only for 768–3072 cores,
since fewer cores leads to excessive time demands. The simulated biological time was 5s using an update interval of
100 ms.

Since the visualization tools are independent of the network topology and size, the scaling impact

of the network’s performance can be measured while neglecting the communication overhead.

To simulate a larger number of populations with a larger number of neurons, it is crucial to

use supercomputers. To this end, I deployed the tool to the JURECA supercomputer at the

Jülich Super Computing Centre. JURECA has 260 compute nodes with Intel Xeon E5−2680 v3
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Haswell CPUs with 2×12 cores per CPU, 128 GB of RAM per node and runs CentOS 7. To

assess the speed-up obtained using this machine, we used the third use case’s setup and measured

the execution times for 50 updates of connectivity in the network, with an update interval of

100 ms. Using a full node on JURECA, I am able to obtain a 2.94-fold speed-up compared to the

workstation setup, which uses 8 Intel Core i7−4710MQ CPUs @ 2.50 GHz and 16 GB of RAM

running on Ubuntu 16.10.

Figure 5.9 shows a strong scaling test for different numbers of neurons per population. Simulation

scalability increases with the number of neurons per population — particularly for 8,000 neurons

per population (a total of 544,000 neurons in the network). This is due to the network size and

spike distribution overhead; larger networks benefit more from the larger number of compute-

nodes and overcomes the inter-process communication and intra-process spike distribution

overhead up to the point that the global number of spikes dominates performance (for a current

discussion, see Jordan et al. 77). In addition, the number of synapses increases quadratically with

the number of neurons per population, which highly impacts the scalability of the simulation.

On the other hand, visualization scalability is dominated by the data gathering step at every update

interval. For the case of large networks like the 8,000 neuron network, the impact of the data

gathering step can be reduced by gathering information from only a portion of the network. A well

selected statistical sample would provide enough information about the ensemble behavior of the

populations while benefiting performance. The current paradigm for the tool funnels data from a

large number of compute backends to a single frontend visualizer. In order to scale with increasing

numbers of backend nodes for massive supercomputing, a more complex data flow and analysis

framework will be needed, such as a multi-node reduction stage to reduce the impedance between

the backends and frontend, as well as reducing the load on the fronted. A generalized software

framework for such infrastructure to couple visualization with supercomputing at scale is, to my

knowledge, currently not available, but considered in the community for future development.

5.5 Discussion

In this chapter, I have introduced a visualization and steering tool for the interactive analysis of

connectivity generation in NEST. To show its applicability, I have presented two use cases where

the tool was used to visualize and steer populations of point spiking neurons to reach a desired

target activity level. My results indicate that by interactively exploring the parameter space and

possible trajectories, scientists can gain a better understanding of the system and concentrate on
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regions of biological interest, as compared to a blind brute force exploration. The improvement

over brute force exploration is because the effects of changes in specific parameters in the network

can be visualized and states outside the admissible regions can be identified and excluded from

further simulation. This improvement leads to a reduction in computational resources and an

educated definition of interesting parameters, states and trajectories.

In this chapter I have used firing rate calculations produced internally in NEST to guide the

generation of connectivity. This method for computing the mean firing rate can impact the

performance of the control system since controllability depends on the delay between measuring

an observable and producing a response. However, the tool is independent of this calculation and

other techniques, such as spike train binning, can be used instead to increase the controllability.

Calculation of firing rate on streams of spike trains might become computationally intensive with

increasing network size. Future implementation of other techniques to increase the data gathering

speed will lower delays and allow other spike processing techniques to be efficiently implemented

as alternatives to the convolution approach.

I selected the use cases in this chapter for their differing degrees of complexity in terms of connec-

tivity and network definition. In the simple use case, different connectivity configurations lead to

the same activity profiles even when some of the trajectories are biologically inadmissible. With

the approach used in this work, the user can concentrate on exploring only those configurations

which are of interest in answering the scientific question posed. In Figure 5.4, I show different

trajectories produced using structural plasticity following homeostatic rules to fit the system to a

firing rate profile. Even the non-biological parameters of the optimizing algorithm itself have an

impact on the final configuration of the network. For example, if one performs a gradient descent

to optimize the activity profile of a network, the results will be sensitive to any arbitrary choice of

initial states of the populations and connectivity. With the ISV tool I was able to characterize the

distribution of representative models and results.

In the second use case, the ISV tool also enables a sensitivity analysis of the system by visualizing

the effect that changes in the connectivity have on the dynamics of the full system. Thus, the user

can draw better conclusions about the relationships between the controllable parameters, in this

case connectivity, and the observables of the system, in this case the firing rate of each population.

The relative sensitivity of the system to the biologically relevant parameters (connectivity) and

the non biological parameters of the optimization algorithm can be observed. The ISV tool can

provide more insight into how different types of synapses are created or modified in the neural

circuit to give rise to different features in the dynamics of the system.
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As I have discussed in this chapter, a brute force exploration of the parameters of a network can

easily become a computationally intractable problem. Choosing a single random configuration or

even only a small sample of configurations from the whole space without a proper characterization

of their distribution is unlikely to lead to a statistically valid distribution of the results. Interactive

visualization is a way to move toward statistically validated conclusions as it allows an assessment

of the essential features of the system, ultimately leading to automated sampling.

While the resulting connectivity patterns are not necessarily unique, the approach I discuss here

enables exploration and assessment of these solutions and their paths. The main contribution of

this approach is the use of interactive visualization and parameter control techniques. These tech-

niques allow the system to be controlled and stabilized within a physiological configuration space

by an expert. When increasing the number of neurons and populations, the number of parameters

to tune increases, resulting in an ever harder-to-reach stable state. Thus, interactive visualization

becomes even more important. The knowledge gained through interactive exploration can lead to

the development of automated tools assisting in the parameter space exploration.

Using this approach, the turn-around times of exploring different connectivity configurations

can be reduced in comparison to simulating all possible parameter configurations and assess

reasonable configurations in a later phase. The speed-up achieved by this exploration is mainly

due to four factors. First, it is not necessary to simulate the system for long times iteratively;

instead, the modifications are performed on demand. Second, partial solutions can be reused

for different global parameter combinations, resulting in the reduction of total computational

costs. Third, the user can visualize the behavior of the system’s observables with respect to

individual parameters, allowing to isolate regions of interest and form a better understanding.

Finally, we can study the transition points in the activity of the networks, which are produced

by the underlying connectivity variations, and interact with the tuning algorithms by visualizing

their impact.

As stated before, the connectivity solutions and paths to solutions for the presented use cases are

not unique, rendering a knowledgeable exploration process crucial. Thus, the interactive analysis

process can accomplish the following:

1. Form an understanding of the implication of different parameter setups for each network

model.

2. Validate the models.

3. Define biologically meaningful populations of interest for the simulation.
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4. Derive measures for the automatic or semi-automatic assessment of the models’ behavior

leading to automated tools guiding the exploration process.

While the generation of connectivity based on empirical constraints for the dynamic system or

experimental data inherently leads to non-unique solutions and especially solutions which are

physiologically implausible, the ability to identify and explore subsets of the solution space is

valuable to form an understanding of the dynamic nature of these systems.

In this work, I have formalized the effects of dynamic connectivity of a network in terms of

control theory. I take into account that the network starts at an initial state and is taken to a

final state through the introduction of control signals which alter the connectivity of the network.

In this case, control of the synapse creation and deletion is induced by the structural plasticity

algorithm. The eigenvalues of the Liouvillian of the network are thus modified with these signals

through the evolution of the simulation and the state of the neurons in the network is changed.

Visualization shows the immediate effects of the control signals in the system. The results

shown in Section 5.4.1 exemplify how even a simple network can traverse different admissible

trajectories (Figure 5.4 a-e) using different elements from the set of all possible controls. I show

how the unconstrained system can traverse an inadmissible trajectory (Figure 5.4 f) or end in

states outside of the admissible set (Figure 5.4 d). One can also seen how inadmissible control

signals are still able to give rise to admissible trajectories and final states (Figure 5.4 e).

The ISV tool was adapted to scale with supercomputers allowing larger networks to be simulated

and finer simulation stepping to be used, thus achieving more accurate results. This way,

researchers can explore the manifold solutions and paths of connectivity satisfying average

activity targets in a variety of neural network models. The tool gathers data from the simulation

at specific intervals, which impacts the performance as the networks become larger. Continuously

streaming data from of the simulation by using, for example, MUSIC [38] or the NEST I/O

backends can reduce this bottleneck and allow greater flexibility in the network size.

In summary, the tool presented in this chapter provides the means to visualize and steer connectiv-

ity generation of a running NEST simulation to stabilize complex non-linear systems. The applied

concepts of the tool are generalizable and extensible to other types of systems with similarly large

degrees of freedom. Adapting and exploring further model parameters, e.g., synaptic weights and

delays, background input frequency, and variation in weights of spike-timing-dependent plasticity

synapses is possible.

In the future, other techniques to track already explored parameter spaces, to develop semi-
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automatic systems to guide researchers in tracking manifold solution spaces and to extend the

tool to support further use cases could be explored. Currently, the saved state refers only to the

connectivity and last values of all variables at the time of saving. A proper visualization which

shows parameter changes required for reproducing every trajectory would be very helpful to

further understand the sensitivity of the network to specific connectivity changes. For the moment,

the loading features are limited and the subject of future work. Machine learning algorithms can

also be coupled with the interactive exploration for various network variables beyond connectivity

(see Chapter 7). As an external observer, learning algorithms could detect oscillations and other

troubling behavior in the network and correct this behavior using the steering controllers. Other

target control measures such as power-spectrum shape and inter-population correlations may be

interesting as complex control variables in the context of machine learning. The modularity of

the software, primarily derived from applying an event driven design, allows for such additions in

a non-intrusive manner.

Linking the time axes of the activity and connection plots to allow for coordinated zooming is

currently not supported but would be a useful extension to the analysis workflow. A visualization

of changes in the network’s eigenvalues as connectivity evolves is also subject to future work.

The creation of additional plots for further variables is simple and can be achieved by adapting

the scripts used in the presented use cases (see the supplementary material of Nowke et al. [114]).

Connecting another visualization application to the NEST simulator is in principle feasible but

requires adapting the visualizer to our communication protocol.

In Nowke et al. [114] we argue that it is crucial to explore the distribution of paths to solutions

instead of focusing on just a possible solution satisfying a set of constraints. To develop this un-

derstanding, interactive exploration of dynamic systems is a key tool for developing mathematical

intuition, and thus for deriving mathematically robust descriptions. These descriptions are then

amenable to further automated investigation of characteristic solution ensembles.

While in Chapter 4 I showed a static view of structural plasticity simulations, the tools developed

and described in this chapter allow for a better analysis and understanding of the changes in the

structure and dynamics of the simulated networks. The ability to change the structure of a spiking

neural network model during simulation is an additional tool provided to the end user to observe

and explore the sensitivity to input/output changes in different populations of the network.
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In the previous chapters I have detailed the implementation of model structural plasticity in

NEST together with a set of visualization and analysis tools useful to understand the impact that

changes in the connectivity of spiking neural networks have in its function. In this chapter I

present an application of structural plasticity modeling to a concrete scientific question in the

realm of clinical neuroscience. Here, the application of Coordinated Reset Therapy (CRT) is

simulated on a model of the Sub Thalamic Nucleus (STN) and the Globus Palidus externus (GPe).

These two regions of the brain, are involved in unhealthy synchronization in Parkinson’s disease.

In order to simulate long lasting effects of CR therapy, this model considers both synaptic and

structural plasticity. Synaptic plasticity is modeled using Spike-Timing-Dependent Plasticity

(STDP). This work shows how the model can be used to simulate neuorbiologically meaningful

phenomenon and supports its base as a connectivity parameter search exploration technique with

direct applications to neuroscience.

In [103] we propose a model to study the impact of structural plasticity in this kind of therapy.

We propose to use a combination of synaptic and structural plasticity in a model of the Sub

Thalamic Nucleus (STN) and the Globus Palidus externus (GPe) in order to study the impact

of these plasticity effects in relation to CRT. It has been observed that the effectiveness of CRT

shows a cumulative effect, allowing subsequent applications of this procedure to have stronger

and faster therapeutic effects. As clinical data is hard to obtain, a simulation strategy may enable

to predict dosage-dependent phenomena relevant for clinical studies. Several simulations of CRT

have been proposed and performed in the past [146, 145, 144]. However, the long lasting effects

of CRT have not yet been visible in such simulations. With this work we offer the scientific

community a modeling and simulation framework to study and hopefully inform the way iterative

CRT could maximize its effects.
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6.1 Introduction to structural plasticity in clinical
applications

Structural plasticity mechanisms related to healing have been studied for long time in clinical

research. One large area of research has focused on explaining the mechanisms behind rewiring

which occurs after injury, including sensory deprivation and stroke. For example, it has been

observed that structural changes, similar to those observed during brain development, are triggered

soon after a stroke takes place. This is seen by an increase in growth-associated proteins in

the peri-infarct areas during the first two weeks after the event, which is then accompanied by

synaptogenesis [141]. This seems to be a natural response of the brain trying to compensate for

the disruptions caused by the injury.

There are several factors which play an important role in the responses of the brain to injury and

disease but the basic mechanism which regulates this adaptation, recovery and compensation is

learning. This topic is discussed in [92], where the authors explore the role of learning in the

rewiring of the brain but also how injury and disease affect the way learning takes place in the

brain. The authors highlight the need of therapeutic measures to consider how learning is affected

and changes by disease but also by the natural reactions of the brain and the therapy itself.

In [153], the authors experimentally observed the structural changes that pyramidal neurons in

the cortex suffered during deprivation of sensory stimuli. They observed that, even when the

general branching of the dendritic tree remained mostly unaltered, there was a high level of spine

sprouting and retraction. They determined that about 50% of the spines only had a lifespan of a

few days or less and concluded that sensory experience is linked to a high synapse turnover.

Neural synchronization, the simultaneous activation or large number of neurons in rhythmic

patterns, has been identified as a common feature in different mental diseases such as Parkinsons’

and tinitus. Coordinated Reset Therapy (CRT) is an alternative to reduce the synchronization

of neural activation and aids in the neural network ’rewiring’ which leads to reduced symptoms

of these diseases [144, 145]. CRT is achieved by inserting stimulation electrodes in the brain

region of interest and generating a pulsed signal. The characteristics such as time of exposure,

frequency and alternancy in the activation - deactivation among electrodes can be adjusted to

meet an specific stimulation protocol with different therapeutic effects.

It has been shown that CRT enhances the quality of life of patients with a suitable profile by

reducing the strength of symptoms. In the treatment of tinitus in particular, it has been shown that

iterative application of CRT with resting periods among sessions has an ever faster and better
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therapeutic effect. The specific mechanisms which lead to this are still subject to research.

Degenerative diseases such as Parkinson’s and Alzheimer induce slow changes in brain networks,

leading to deterioration of higher brain function and memory. Lesions and brain disease can

transiently reconfigure local excitation-inhibition to an immature state [69]. Tests performed on

healthy and stroke patients have shown that the human brain undergoes morphological alterations

in response to learning and/or rehabilitation [137, 56, 20]. These alterations can be linked to a

trigger of periods of structural plasticity which aim at reinstating a previously healthy or a more

mature state of the brain circuitry.

6.2 Implementation of the STN-GPe neural network with
STDP and structural plasticity

6.2.1 The Network Model

The network model used in this chapter is described in Manos et al. [103] and consists of two

interacting nuclei, the STN and the GPe. The STN neuron population is linked with the cortex

in an excitatory manner while the GPe one is linked with the striatum in an inhibitory manner.

The connectivity matrix of the STN-GPe network can be expressed as the combination of several

sub-networks:

W =

(
wss wsg

wgs wgg

)
(6.1)

denoting the connectivity matrices for the STN-STN (ss), STN-GPe (sg), GPe-STN (gs), and

GPe-GPe (gg) sub-networks, respectively. Each Wi j value corresponds to the connection strength

between neuron i and j while self-connections are excluded, i.e. Wii = 0,∀i. The neuronal

network is a weighted and directed graph, and hence, this matrix is not necessarily symmetric. In

Figure 6.1, the basic feature components of the network configuration are shown. The synaptic

connections in the STN population are excitatory while in the GPe population they are inhibitory.

Red and blue arrows indicate excitatory and inhibitory synaptic connections without plasticity,

respectively. The red dashed line represents plastic connections between the STN neurons. The

external electrical stimulation exerted to the STN is indicated by the gray solid line as DBS (deep

brain stimulation).
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GPe STN

Striatum

GPeCortex

SP / STDP Poissonian 

spike trainPoissonian 

spike train

DBS

Figure 6.1: Structure of the model network. Excitatory synaptic connections are shown in red while the inhibitory
ones in blue. Dashed red lines represent connections within the STN population which are subject to structural and
synaptic plasticity. The external electrical stimulation is exerted to the STN population. The STN population receives
input from the cortex in the form of poissonian spikes. The GPe population receives input from the Striatum also as
poissonian spikes.

6.2.2 Network and connectivity models

The simple network model consists of 1,000 STN and 1,000 GPe neurons, while the large model

uses 10 times as many neurons on each population. The number of neurons was chosen to be a

balance between a biologically realistic and a computationally treatable model. The coordinates

of each neuron have been acquired from magnetic resonance imaging (MRI) data taken from

a PD patient before DBS surgery, both from the left-brain hemisphere. See [45] for a detailed

description of the motivation and construction of the whole model.

The model presented here has 4 different types of synapses, STN-GPe, STN-STN, GPe-STN and

GPe-GPe. All parameters are listed in Table (6.1). The STN neuron excitatory connectivity values

are based on 11 , Each STN neuron extends connections to 7% of the entire STN population,

700 synapses per neuron and 7× 106 synapses in total for the large model. Within the STN

population synaptic delays are set δss = 4.0 ms. The connection probability between neurons

follows the exponential law p(x) = e−x/cd with cd = 0.5. Correspondingly, the inhibitory GPe

neurons are connected to 1% of other neurons in the population, 100 synapses per neuron and
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1×106 synapses in total. The delay within the GPe population is δgg = 4.0ms and cd = 0.63. The

initial synaptic weights for both STN and GPe connections are drawn from a Gaussian probability

distribution around a mean value wss = 0.0025 with standard deviation δss = 0.000125. The

two structures are connected to each other as the STN affects GPe via excitatory input while

the GPe extends inhibitory connections on the STN. There is no distance dependence for the

connectivity between both populations. Connection probability is 2%, which translates into 200

randomly picked synapses with transmission delay of δsg = δgs = 6.0ms for connections between

the STN and the GPe. Corresponding initial synaptic weights are drawn again from a Gaussian

probability distribution around a mean value wsg = 0.006 and wgs = 0.003 with standard deviation

σsg = 0.0003 and σsg = 0.00015 respectively.

The postsynaptic currents are described with α-function:

α(t) =
t− tk
τ2

syn
e

t−tk
τsyn , tk ≤ t < tk+1 (6.2)

where tk denotes the spike time. The total synaptic input current to a postsynaptic neuron i

received from presynaptic neurons j is then given by:

Isyn,i(t) = ∑
j

Wi j(vi(t)− vsyn)α(t), (6.3)

where Wi j is the synaptic weight between the presynaptic neuron j and the postsynaptic neuron i

and vsyn is the reversal potential for excitatory or inhibitory connections. Therefore, vsyn depends

on the type of connected neurons and on whether the connection is excitatory or inhibitory.

6.2.3 The Terman-Rubin Neuron Model

In [103] we used the single-compartment conductance-based Terman and Rubin model [147, 128]

to describe STN and GPe neurons. In this model the membrane potential is given by the following

equation:

cm
dv
dt

=−IL− IK− INa− IT − ICa− Iahp− Isyn + Istim + Inoise (6.4)

Spiking activity is caused by the sodium (Na+ ) and potassium (K+ ) ionic currents INa, IK . IT

and ICa describe the low-threshold T-type and high-threshold Ca2+ current respectively. Iahp

represents a Ca2+ -activated, voltage-independent after-hyperpolarization K+ current and IL

the leak current. In addition, the STN and GPe neurons are influenced by synaptic inputs Isyn.
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Surrounding brain areas contribute with Inoise while there is an external stimulation current Istim

(only in the STN population) which models the deep brain stimulation (DBS). Other ionic currents

(in pA/µm2 ) are described by:

IL = gL[v− vL] (6.5)

IK = gKn4[v− vK ] (6.6)

IT = gT a3
∞(v)b

2
∞(r)[v− vCa] (6.7)

ICa = gCas2
∞(v)h[v− vCa] (6.8)

Iahp = gahp[v− vK ]
[Ca]

[Ca]+ k1
(6.9)

d[Ca]
dt

= Γ(−ICa− IT − kCa[Ca]) (6.10)

STN and GPe neurons are described by similar equations and they differ only in a few parameter

values as well as in the form of the low threshold Ca2+ current IT = gT a3
∞(v)(r)[v− vCa] for the

GPe neurons (i.e. the b2
∞ term is omitted). All the mean parameter values and their units are

summarized in Table (6.1). Neurons are not identical, i.e. their reverse potential parameters and

ion channel maximum conductances are drawn from Gaussian probability distributions with 10%

standard deviation around the mean value. The refractory period is set equal in both STN and

GPe neurons at τre f = 3 ms.

6.2.4 Noise inputs

Each GPe neuron receives external inhibitory input from the striatum which is described by a

constant negative input current of −7.0 pA as well as Poissonian spike trains with a frequency of

40 Hz. STN neurons receive Poissonian spike trains with a frequency of 20 Hz emulating input

received from the Cortex. See [45] for more details. Each neuron receives independent random

Poissonian spike trains. These noise frequency values are chosen with respect to the respective

STN and GPe relative firing rate.
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Parameter STN GPe Units Parameter STN GPe Units
gL 2.25 0.1 nS/µm2 gK 45.0 30.0 nS/µm2

gNa 37.5 120.0 nS/µm2 gCa 0.5 0.15 nS/µm2

gahp 9.0 30.0 nS/µm2 gT 0.5 0.5 nS/µm2

vL -60.0 -55.0 mV vK -80.0 -80.0 mV
vNa 55.0 55.0 mV vCa 140.0 120.0 mV
vss 0.0 - mV vsg 0.0 - mV
vgs - -100.0 mV vgg - -80.0 mV
ηh 500.0 0.27 ms ηn 100.0 0.27 ms
ηr 17.5 30.0 ms ξh 1.0 0.05 ms
ξn 1.0 0.1 ms ξr 40.0 - ms
υh 0.75 0.05 ms υn 0.75 0.05 ms
υr 0.2 1.0 ms τss 1.0 - ms
τgs 3.3 - ms τgg - 3.3 ms
τsg - 1.0 ms θm -30.0 -37.0 ms
θh -39.0 -58.0 ms θn -32.0 -50.0 ms
θr -67.0 -70.0 ms θa -63.0 -57.0 ms
θb 0.4 - ms θs -39.0 -35.0 ms
om 15.0 10.0 ms oh -3.1 -12.0 ms
on 8.0 14.0 ms or -2.0 -2.0 ms
oa 7.8 2.0 ms ob -0.1 - ms
os 8.0 2.0 ms µh -57.0 -40.0 ms
µn -80.0 -40.0 ms µr 68.0 - ms
k1 15.0 30.0 ms γh -3.0 -12.0 ms
γn -26.0 -12.0 ms γΓ -2.2 - ms
kCa 22.5 20.0 ms Γ 3.75×10−5 1×10−4 ms−1

cm 1 1 (pF/µm2)

Table 6.1: Parameters for the definition of STN and GPe neurons.

112



6.2 Implementation of the STN-GPe neural network with STDP and structural plasticity

6.2.5 Spike-Timing-Dependent Plasticity

The weights of the synaptic coupling between neurons in this model are regulated by Spike

Timing Dependent Plasticity (STDP). We use the following STDP rule as shown in [45].

∆wi j(∆ t) =

λe−
|∆t|
τ+ , ∆t > 0,

−λγe−
|∆t|
τ− , ∆t ≤ 0

(6.11)

where τ−= 27.5 and τ+= 12.0 are the time constants for the synaptic weight change of depression

and potentiation respectively, λ = 0.002 is the learning rate of the synaptic connection and

γ = 1.4 defines the ratio between depression and potentiation in the synaptic learning rule.

Synaptic weights are allowed to take values only on the interval [0,0.002] in order to avoid

non-physiological values.

6.2.6 Structural Plasticity

The primary purpose of the structural plasticity algorithm is to model the neurobiological phe-

nomenon of morphological transformations that a neuron undergoes through time, leading to the

creation or deletion of synapses. Using the structural plasticity framework in NEST, a network

will self-generate synapses in order to stably achieve a desired profile of electrical activity, a

measure that is rather more experimentally accessible than detailed connectivity data. By pro-

gressively and slowly changing the connections between neurons in the network and the weight

of these connections for all populations simultaneously, the structural plasticity algorithm is able

to find a stable configuration with the desired firing rate profile. For details on the structural

plasticity model please see Section 2.3.1 and for more details on the implementation please refer

to Chapter 4.

Structural plasticity works as an internal controller of the activity in the neural network, smoothly

changing the connectivity to reach a target behavior. In this study, Gaussian curves as de-

fined in Equation (2.2) are used to describe the growth rate of connection points for neu-

rons. The basic experimental setup considers ν = 0.00008 synapticelements/ms for the Gaus-

sian growth curve and ε = 3.0Hz for the synapses between STN and STN neurons and ν =

0.00002 synapticelements/ms and ε = 3.0Hz for the synapses between STN and GPe neurons. I

also setup homeostatic rewiring in the post-synaptic ends of the synapses using a Gaussian growth

curve of ν =−0.005 on both STN and GPe synapses with ε = 3.0Hz and ε = 7.0Hz respectively.
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Figure 6.2: Growth rate curve determining the speed of creation and deletion of synaptic elements in the structural
plasticity model. The parameters which define the shape of the curve are the growth rate ν which defines the peak
of the curve, and the target firing rate ε . The pink band indicates the region where the model operates during the
simulations reported in this work for the STN population and the blue band indicates the operation region for the GPe
population. The growth curves for the STN to STN synapses (blue), STN to GPe synapses (red), STN rewiring (pink)
and GPe rewiring (cyan) are shown in this plot with a maximum growth rate of ν = 0.00008 synapticelements/ms,
ν = 0.00002, ν =−0.005, and ν =−0.005 respectively. ε was set to 3.0 Hz for the STN to STN and STN to GPe
rules. For the rewiring curves, the value of ε was set to 3.0 Hz for the STN population and 7.0 Hz for the GPe
population, matching their target level of activity.

This homeostatic rewiring allows the creation of new post-synaptic contact points which can be

associated to freed pre-synaptic contacts during synaptic deletion on each structural plasticity

update. The specific curves used in the following experiments can be seen in Figure 6.2. This

setup is meant to drive the target STN firing rate towards a non-pathological rate of about 3.0 Hz.

Structural plasticity and the Gaussian growth curve are applied only to excitatory connections

from and to the STN population, and to excitatory connections from STN to the GPe population

as seen in Figure 6.2. The growth rate has only positive values in this case. The curve specifies

that when neurons have a firing rate higher than 3.0 Hz, synapses will be deleted; if neurons have

a firing rate lower than 3.0 Hz, synapses will be created. In this case, I am working in a regime of

about 3.6 Hz at the moment structural plasticity is enabled after each stimulation cycle, which is

higher than the target firing rate. This means that during the simulation, synapses will be slowly

deleted until the desired 3.0 Hz target is reached.

For these simulations I have artificially accelerated the changes in the structure of the neural

network in order to make feasible the simulations within reasonable times. Structural plasticity

was integrated to the topology module in NEST, in order to be able to work with layers and the

creation functions particular to this module. The model also makes use of STDP as synaptic
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plasticity algorithm. The selective activation and deactivation of both the structural and synaptic

plasticity algorithms was required in order to allow a smooth interaction between them.

6.2.7 External Coordinated Reset stimulation

The external invasive DBS electrical CR stimulation performed to the STN population was

modeled as a signal of short biphasic current or voltage pulses. This is the same as previously

used in [45] (see ”Stimulation input” for original motivation). In more detail, a current pulse P(t)

for stimulation of κ ,

P(t) =


κ, tl ≤ t < tl +ω,

−κ/ps, tl +ω ≤ t < tl +ω(1+ ps),

0, else

(6.12)

tl denote the onset times of the current pulses, κ is the amplitude, and ω is the width of the

cathodal pulse. ps determines the duration and amplitude of the charge-balancing anodal pulse

part which prevents any permanent charge transfer into the neuronal tissue that could possibly

damage the tissue. In this work, we use a fixed electrode position at the center of the STN

population which was found to be most adequate for optimal CR stimulation performance in

Ebert et al. [45]. In order to model the electric field produced by the external stimulus, we used

the setup of Medtronic DBS lead model 3389 (broadly used in clinical trials) which has four

separate cylindrical contacts made of a Pt-Ir alloy with a typical length of 1.5mm [28]. We used

an explicit equation which approximates adequately the overall distance dependent decay of

stimulation strength as used in Ebert et al. [45]:

S(dil) =
1

dillc
√

1+4( dil
lc
)2

(6.13)

where dil is the distance between neuron i and the location of the stimulation contact l and lc is

the length of the electrode contacts. We prohibit possible neuron coordinates within a cylindrical

volume with 1.4 mm diameter around the electrode axis. We use 4 stimulation sites and all

neurons receive input from all sites. During each stimulation period of duration 125 ms, each site

is activated via an electric burst only once and not at the exact same onset time with any other

site. This order of activation varies randomly in every cycle. Three cycles of CR stimulation
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(ON-cycles) are followed by two cycles without stimulation (OFF-cycles). The stimulation period

within a burst is set at Tp = 7.69 ms, the CR stimulation amplitude κ =−3.3 is, the width of the

cathodal pulse at ω = 200 µs and the duration and amplitude of the charge-balancing anodal

pulse at ps = 8. For a detailed description of the CR stimulation setup see [45].

The synaptic weights, being affected by the STDP and the different intrinsic periods of the

neurons, change dynamically in time.

In order to measure the degree of the neuronal synchronization within the neuronal population at

time t we use the order parameter R:

R(t) = |N−1
∑

j
eiϕ j(t)|, (6.14)

where i here denotes the unit imaginary unit
√
−1, ϕ j(t) = 2π(t− t j,m)/(t j,m+1− t j,m) for t j,m ≤

t < t j,m+1 is a linear approximation of the phase of neuron j between its mth and (m+1)th spikes at

spiking times t j,m and t j,m+1. The order parameter R measures the extent of phase synchronization

in the neuronal ensemble and takes values between 0 (absence of in-phase synchronization) and 1

(perfect in-phase synchronization).

6.2.8 Using the model to investigate the role of structural plasticity in
CRT

All simulation protocol used in this work start with the model in a desynchronized state with

down regulated synapses. Simulation were performed using a modified version of NEST which

is able to work with structural plasticity and the topology module. This version also allows the

user to disable STDP in selected synapses and enable structural plasticity in the same simulation.

Since the two types of plasticity take place at very different time scales, I turn off the STPD

during the periods when structural plasticity is enabled, assuming its impact is negligible and no

external stimulus is delivered during that time. In the NEST simulations I present in this work,

the update interval of the structural plasticity algorithm was set to 1000 simulation steps. During

this interval, synaptic elements grow and recede according to the firing rate of the neurons at

the same time scale as the electrical activity is calculated, but it is only when the time interval

is complete that the actual connections between neurons are updated. The firing rate of each

neuron is calculated by NEST, using a low pass filtering technique. For more details on how this

calculation is performed as well as the impact of the update interval and other structural plasticity
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parameters in the evolution of the simulations (see Nowke et al. [114]).

All runs were performed on the JUWELS supercomputer in the Jülich Supercomputing Centre.

Protocol 1: Simulations only using STDP with 2 stimulation cycles

1. Step 1: Apply sufficiently strong periodic stimulation (PS) to induce a kindling. By doing

this, the network is shifted to a strongly (synaptically) connected, synchronized and stable

state. This periodic stimulation is performed for 2.5 min of biological time.

2. Step 2: Once this stimulation is over, deliver CR stimulation causing a desynchronization

and reducing the order parameter sufficiently well. This stimulation takes 10 min of

biological time.

3. Step 3: Start a 10 min period of CR-off where the network relaxes to a desynchronized

state with down-regulated synaptic weights. These three steps are performed with STDP

activated.

4. Step 4: Start a longer waiting phase which is intended to represent days of biological time

between stimulation sessions. In the simulation, this takes 20 min.

5. Step 5: Repeat Steps 1−3.

Results of this initial simulation can be seen in Figure 6.3 As it can be observed, the model

behaves exactly the same during the second phase of synchronization and desynchronization.

There is no trace of long term changes induced to the network during the first CR stimulation.

Protocol 2: Simulations using structural plasticity with 2 stimulation cycles

1. Step 1: Perform Steps 1−3 in the same way as we did in Protocol 1.

2. Step 2: When the longer waiting phase is started, STDP is turned off and structural plasticity

is turned on.

3. Step 3: Repeat Steps 1−3 from Protocol 1 again.

Results of the second protocol can be seen in Figure 6.4 In this second protocol it becomes visible

that, when structural plasticity is enabled, the effects of the second CRT stimulation are faster

and better than the first time. Structural plasticity reinforces the desynchronization of the network

achieved by CRT and STDP by means of pruning synapses.
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Figure 6.3: Synchronization, firing rate and connections for 2 long CR sessions without SP. a) Spiking rates for STN
and GPe neurons respectively. Light blue bands denote the Periodic Stimulation (2.5 min) intervals and light gray the
CR-ON stimulation periods (10 min). STDP is active throughout the whole-time evolution. b) Time evolution of the
order parameter < R > averaged over a sliding window (100 ms) for STN (red solid line) and GPe (blue solid line)
neurons. c) Number of total connections in the STN population during the simulation.

Protocol 3: Simulations using structural plasticity with 3 stimulation cycles

1. Step 1: Perform Steps 1−2 in the same way as in Protocol 2.

2. Step 2: Perform Step 3 in the same way as in Protocol 2 but with a reduced CR time of

6 min.

3. Step 3: Repeat Steps 1−2 again from Protocol 2.

4. Step 4: Perform Step 3 in the same way as in Protocol 2 but with a reduced CR time of

5 min.
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6.2 Implementation of the STN-GPe neural network with STDP and structural plasticity

Figure 6.4: Synchronization, firing rate and connections for 2 long CR sessions with SP. Light blue bands denote the
Periodic Stimulation (2.5 min) intervals, light green bands denote periods where only SP was active, and light gray the
CR-ON stimulation periods (10 min). a) Spiking rates for STN and GPe neurons respectively. b) Time evolution of the
order parameter < R > averaged over a sliding window (100 ms) for STN (red solid line) and GPe (blue solid line)
neurons, as well as the whole network averaged value (cyan solid line). c) Number of total connections in the STN
population during the simulation.

Results of the third protocol can be seen in Figure 6.5 In this third protocol the effects of structural

plasticity are even more visible in the third stage of synchronization and therapy. It is also visible

that CR only requires 6min the second time and 5min the third time to desynchronize the network

when SP is used (panels a-c), while this is not possible in the case without SP (panels d-e).
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Figure 6.5: Synchronization, firing rate and connections for 3 CR sessions with SP compared to the non SP scenario.
Light purple bands denote the Periodic Stimulation (2.5 min) intervals, light green bands denote periods where only
SP was active, and light grey the CR-ON stimulation periods (10 min, 6 min, and 5 min correspondingly) a) Spiking
rates for STN and GPe neurons respectively with SP. b) Time evolution of the order parameter < R > averaged over a
sliding window (100 ms) for STN (red solid line) and GPe (blue solid line) neurons, as well as the whole network
averaged value (cyan solid line) with SP. c) Number of total connections in the STN population during the simulation.
d) Spiking rates for STN and GPe neurons respectively without SP. e) Time evolution of the order parameter < R >
averaged over a sliding window (100 ms) for STN (red solid line) and GPe (blue solid line) neurons, as well as the
whole network averaged value (cyan solid line) without SP.
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6.2 Implementation of the STN-GPe neural network with STDP and structural plasticity

Figure 6.6: Growth curve, synchronization and firing rate for a simulation where all excitatory synapses from STN to
STN and STN to GPe are regulated by structural plasticity. For growth curves, the same color coding is used as in
Figure 6.2. In the growth curve plots, blue stripes define the operation region of the GPe population while the pink
stripes define the operation region of the STN population. In the synchronization and firing rate plots use the same
color coding as in Figure 6.4. In these plots light blue, red, and cyan horizontal lines are used to compare values
between the first and the second CR stimulation sessions.

6.2.9 Parameter exploration and tunning

The long lasting effects of structural plasticity in this model regarding the enhanced outcome

that CRT can achieve are visible in protocols 2 and 3. However, as already explained in previous

chapters, the algorithm has several parameters which affect the speed of creation and deletion
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Figure 6.7: Growth curve, synchronization and firing rate for a simulation with high growth and deletion rate (1×10−3)
for the STN to STN synapses. Same color coding is used as in Figure 6.6

of synapses. Figures 6.6 to 6.9 show examples of the behaviour of this model with different

parameters of structural plasticity. These examples were extracted among 250 parameter combi-

nations explored with this model. Each Figure has a different growth curve and shows particular

characteristics. Figure 6.6 shows simulations where the synapses between the STN and STN

neurons as well as the ones between the STN and GPe neurons are regulated with structural

plasticity. As it can be seen, similar as the example in protocol 3, the system attempts to reach the

target activity regime. However, the effects are less visible as protocol 2 and there is low rewiring,

and mostly creation and deletion of synapses. It is also visible that in the second phase, the CR
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6.2 Implementation of the STN-GPe neural network with STDP and structural plasticity

Figure 6.8: Growth curve, synchronization and firing rate for a simulation with same configuration as protocol 2 but
higher rewiring values. Same color coding is used as in Figure 6.6

stimulation does not have the same desynchronization effect as in the first stimulation phase,

making it possible to reduce the time required for desynchronization after structural plasticity

takes place. The results in Figure 6.7 reflect the behaviour of the network for a growth curve with

a rate of 1×10−3 and a target firing rate of 3.0 Hz. Here the deletion and creation of synapses

takes place very fast, moving the system out of an stable regime and making it impossible to

desynchronize after the first structural plasticity period. The system also shows artifacts in the

interface between the STDP and structural plasticity active periods. Figure 6.8 shows an example
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Figure 6.9: Growth curve, synchronization and firing rate for a simulation with low growth and deletion rate. Same
color coding is used as in Figure 6.6

similar to protocol 2 but with a higher rewiring factor. The system shows an stronger susceptibility

to desynchronziation in the second CR stimulation phase, but a plateau in the GPe population

forms in the middle of the CR stimulation. In other simulations with even stronger rewiring,

it was possible to see that this plateau impacts the network’s internal balance and reduces the

effectiveness of the CR stimulation. Finally, in Figure 6.9 the system is simulated using a growth

rate of −8.0×10−5. Here we can see an inverse effect, where new connections are created and

reinforce the susceptibility of the network to getting into a synchronized state and remaining

there. This means that the CR stimulation period takes longer time to desynchronize the network.

124



6.3 Discussion

6.3 Discussion

This is the first computational study investigating the impact of SP on the outcome of CR stimula-

tion. We implemented SP in a STN-GPe network with plastic STN-STN synapses governed by

STDP. In the absence of structural plasticity, repeated administration of PS-CR sequences leads

to reversible transitions between desynchronized and synchronized states Figure 6.3. By the same

token, delivering PS-CR sequences with CR epochs of insufficient duration causes transitions

between synchronized states of different amount of synchrony. To date, changes of susceptibility

to CR stimulation after stimulation-free pauses have not been observed in computational studies.

However, such effects were previously observed in a clinical study with acoustic CR stimulation

[146], where therapeutic responses of tinnitus patients to CR stimulation were particularly strong

after a pre-planned 4-week treatment pause. In general, effects of this kind may allow the further

reduction of the total stimulation duration; in an example such as DBS, this could further reduce

the rate of side effects. In our model, comparable memory-type of treatment effects come into

play when structural plasticity is activated (Figure 6.4-Figure 6.5). On one hand, the PS epochs

in the PS-CR sequences may serve as a standardized model process accounting for detrimental

influences on patients during stimulation-free intervals, leading to a re-increase of symptoms (see

[146]). On the other hand the PS epochs may be considered as standardized probes, enabling the

testing of the network’s resistance to synchronizing stimulation protocols.

Assuming that the target firing rate is within a range characterizing a healthy STN firing state,

structural plasticity continuously rewires, modifies the connectivity and down regulates the

firing rate by deleting excitatory synapses. Consequently, during the PS epoch the STN re-

synchronization is less pronounced and does not reach the initial levels observed by the first

PS epoch (Figure 6.4). The amount of synchronization of the GPe network, which provides an

inhibitory output, during and directly after the PS epoch does not change significantly compared

to the first PS epoch. However, during the subsequent CR epoch the desynchronization of STN

and GPe are both accelerated in a similar manner compared to the first CR epoch. Accordingly,

a long-lasting desynchronization of STN and GPe can be achieved by means of a considerably

shorter CR epoch (e.g., half the duration).

An important prerequisite of the structural plasticity effect is that after the CR epoch the STN

firing rate relaxes to a value sufficiently close to the structural plasticity target firing rate. This

enables structural plasticity to take over efficiently and down-regulate the number of excitatory

connections within the STN, together with the firing rate using the homeostatic rule. The choice
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of a Gaussian curve in the structural plasticity model employed in this study was motivated by

experimental data [5, 96] which suggests that the generation of new spines starts slowly when the

activity in the neuron is low and progressively increases to a maximum. Then it starts to decay

until a homeostatic equilibrium is reached [22]. During development the degree of plasticity

during critical periods also increases slowly until a maximum level, and then decreases until a

degree of maturity is achieved (see box 1 in [69]). It is interesting to note that a reduction by

5.76% of STN-STN and STN-GPe connections during the structural plasticity epoch is sufficient

to increase the network’s resistance to PS and also its increased susceptibility to CR stimulation;

the SP effects accumulate, even though intersected by a PS-CR sequence.

The structural plasticity-mediated effect of increased resistance to PS and subsequent increased

susceptibility to CR stimulation depends on the target firing rate. If a higher frequency, say 3.6Hz

instead of 3.0 Hz, is used as target firing rate for the homeostatic structural plasticity mechanism

then the deletion of excitatory synapses is less pronounced; in turn, the network’s SP-induced

resistance to PS and its subsequent increased susceptibility to CR too (Figure 6.7)). For the

structural plasticity algorithm, a Gaussian growth curve with target firing rate of 3.0 Hz was

chosen. This target firing rate was chosen because it is slightly below the final firing rate of the

neurons after the CR therapy. The theory behind this selection is that CR teaches the network

a new activity regime, which structural plasticity reinforces. Simulations were performed with

a variable growth rate from 0.00001 to 0.0001 synapticelements/ms. The parameter search was

performed in order to match the experimental results. The constraints to the selection of suitable

network transitions included no instabilities of the network activity between CR sequences. It

was also visible that structural plasticity in both STN-STN and STN-GPe synapses was required

in order to achieve stable networks, and a good balance between the creation and deletion of

both types of synapses is also highly relevant to reproduce experimental results. The main

motivation and rationale were to design a SP mechanism whose time evolution would cause

sufficient synaptic deletion in order produce an impact on the macroscopic measurement (order

parameter) within a computationally feasible time

In the brain there are several plasticity rules which take place simultaneously and the interaction

between them, their specific detailed mechanisms and different roles are still not fully understood.

However, increasing experimental evidence shows that synaptic plasticity takes place on time

scales that may range from seconds to minutes and up to hours (see e.g. Zenke and Gerstner

[169]). In contrast, structural plasticity is a much slower process which has been identified to

take place across longer time frames, i.e. from several hours through to days, weeks and months
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(see e.g. Van Ooyen and Butz-Ostendorf [155]). Harnack et al. [61] explain the homeostatic

control as an internal mechanism of neurons which allows them to keep a healthy operating

regime. Their analytical framework is based on control theory and explores possible and adequate

conditions for stability in recurrent networks which can be directly linked to different mechanisms

of plasticity such as the ones were explored in this chapter. In this study and the novel NEST

based code, the power of structural and synaptic plasticity are combined to provide a modeling

test environment that captures memory-like phenomena of susceptibility to CR stimulation. From

the modeling and simulation perspectives, there are several challenges related to this setup;

the most significant is that simulations of detailed networks are computationally demanding,

especially when the two types of plasticity are involved. This is mainly due to the variations

in the transmission and generation of spiking events in the network, as well as the additional

calculations that take place at the synapse level. Simulations of the size used in this chapter can

have a simulation to real-time factor of about 10−20. This means that simulations of 1 s take

10to20 s to be simulated computationally. Accordingly, exploring slow SP-induced changes of a

simulated network within 1 month of biological time, could take a normal simulation of up to

several ( 20) months duration. Obviously, such a scenario is significantly resource-intensive. In

contrast, using NEST simulations, the effects of structural plasticity can be accelerated so that

simulations can be reduced from months to a couple of hours. With this solution, I am able to

simulate at feasible computing times both the synaptic plasticity, which takes place during PS

and CR epochs, followed by a stabilization period and the subsequent activation of SP, running

at reasonably high speed by means of an accelerated model. During this accelerated simulation

period, I disable synaptic plasticity in order to avoid inconsistencies that would be induced due to

the fact that the model operates at different time scales.

In a previous computational study in a neural network with STDP, but no structural plasticity, it

was shown that spaced CR stimulation, i.e. CR stimulation intermingled with sufficiently long

stimulation-free pauses, may significantly improve efficacy; this is particularly important if CR

stimulation is delivered at otherwise ineffectively weak intensities [121]. That study, together

with our current study, illustrates the importance and active role of pauses in therapeutic processes

employing plasticity principles. Stimulus-free intervals should not just be considered periods

without intervention. Rather they may be an integral part of a therapeutic process enabling and

potentiating stimulus effects which should be adequately addressed by dose-finding studies. By

combining both types of plasticity it is possible to explore the immediate stimulation-induced

effects of synaptic plasticity as well as the long-term effects mediated by structural plasticity
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within a single consistent, efficient, and tractable simulation model. The model described in this

work provides a simulation test space for neuroscientists to evaluate and study the effects of

plasticity and stimulation as well as their interactions for therapeutic purposes.

Future studies could, for example, be devoted to the development of desynchronizing stimulation

protocols that are adapted to specific ranges of target firing rates. To this end, it is crucial to

understand stimulation-induced changes of the firing rate. In fact with very few exceptions

(see e.g. Lysyansky et al. [101]), the vast majority of computational studies devoted to CR

stimulation to date have not focused on stimulation-induced changes of the firing rate. This study

highlights that not only the CR epochs, but also pauses in between CR epochs, may be crucial

for the long-term stimulation outcome. CR stimulation and, in general, all kinds of efficient

desynchronizing stimulation protocols may initiate STN-GPe circuits in favorable states, so that

SP makes networks more susceptible to desynchronizing stimulation over time.
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optimization algorithm

In the previous chapter I discussed an application of the structural plasticity model implemented

in NEST in the field of clinical neuroscience. In Chapter 3 I presented a set of algorithms

frequently used in machine learning and discussed similarities to how structural plasticity works.

Chapter 5 also supports the potential of using structural plasticity as an optimization algorithm

for taking a neural network from an initial activity regime to another, following homeostatic

rules. In this chapter, I use structural plasticity to find network structures which lead to functional

regimes of interest for neuroscientists in large scale simulations. I leverage the potential of

structural plasticity to find network architectures by optimizing their connectivity against a

specific measure i.e. firing rate. The parameter space which can be used to define dynamic

point-to-point connectivity in a neural network is vast, and increases quadratically (O(n2)) with

respect to the number of neurons without further constraints. In this chapter I exploit structural

plasticity to find static structures and also combine it with other machine learning algorithms (as

the ones described in Chapter 3) to find general plasticity rules which can take a neural network

from an initial immature functional state to a final mature functional state. This optimization of

plasticity rules can also help understand critical relationships in the evolution of brain structures

during learning, healing or development. This approach allows us investigate general connectivity

rules that can give more insight on how the brain achieves and preserves its function.

7.1 Definition of the structural plasticity model

In the following I will describe the specifics of the structural plasticity model I use for the

simulations in this Chapter. A Gaussian curve, as shown in Figure 2.2, is an example of a

homeostatic rule and describes the growth rate of connection points for neurons as a function of

the neurons firing rate as described in Section 2.3.1. In this Chapter, I make use of homeostatic
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curves of this type to guide the structural plasticity model and will make reference directly to the

mean firing rate (as in Chapter 5) to guide the optimization algorithms. As already explained in

Chapter 4, the parameters defining the growth and decay of synapses are the minimum firing rate

required to start generating synaptic elements η , the growth rate ν , and the target firing rate ε .

Modifying these values alters the way connections are created and deleted in the network.

In Chapter 5 I presented an interactive steering and visualization tool for structural plasticity,

with the objective of exploring the complex parameter space of potential homeostatic rules

through time. The tool combines interactive steering and visualization interfaces, middle-ware for

dynamic software component connection, and a live NEST simulation implementing structural

plasticity dependent upon a large-dimensional parameter set. This development was driven by

the need to rapidly reach stable configurations of connectivity with the supervision of a human

controller. The tool allows for the visualization of the trajectories the system undergoes during

simulation by showing the changes in the observable states of the network, namely, the activity

and connection properties of the network. It also allows the user to change the shape of the

homeostatic curve and visualize the impact of the changes in connectivity while the simulations

are running. The topic of this chapter is how to use an automated version of this process and

allow an optimizer to guide the search. The optimizer is integrated into the interactive steering

and visualization tool in such a way that human monitoring is still possible during automated

explorations.

In this chapter, I combine the neurobiologically inspired structural plasticity algorithm (which

I will refer also as the optimizee) with a machine learning supervising algorithm (which I

will refer to as the optimizer). The aim is to allow the optimizer to guide the broad search

of relevant parameters to answer our scientific questions while, at the same time, imposing

neurobiological restrictions using the structural plasticity rules below it. This will be done by

applying the optimizer to the homeostatic rules which guide the optimizee. By generating a

series of homeostatic rules which enable certain transitions of interest within the system, I aim at

obtaining a better understanding of how homeostatic changes in the network affect its activity.
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7.2 Adaptive optimization of structural plasticity in spiking
neural networks

As stated before, the goal of this chapter is to find homeostatic rules for the structural plasticity

algorithm which provide a range of expected trajectories for the dynamics of the neural network,

using adaptive algorithms. In order to achieve this goal, I used a meta-learning framework in

combination with simulations of spiking neural networks in NEST. Learning to learn [151] is a

specific solution for acquiring constraints to improve learning performance. In machine learning,

a learning program is trained against samples from a single task with a well-defined performance

measure in order to improve its performance against new samples from that same task. As

discussed in the previous chapter, meta-learning improves the program’s performance at training

against samples from a new task from a family of tasks. This is achieved by optimizing the

hyperparameters (such as a set of synaptic plasticity values) of the learning system across the

family of tasks. This approach begins by training against a learning task with a well-defined

performance measure and measuring the learning rate or absolute performance after a fix period

of training. Depending on the fitness of the resulting training run, the training is then repeated for

new tasks from the family using a variation of the resulting hyperparameters from the previous

generation and learning is measured again. Over many generations, meta-learning can occur:

the network has been trained to optimize the learning rate for a family of tasks. The learning

to learn concept can be decomposed into an inner loop, where an optimizee program (such as

a deep learning network or a simulation of a biological neuronal network) learns specific tasks

and an outer loop where an optimizer program searches for generalized optimizee parameters

(hyperparameters) that learns to improve the optimizee’s performance over distinct tasks as

measured by a fitness function (see Figure 7.1). The performance of this outer loop depends on

the performance of the optimizer and the number of simultaneously cooperating optimizees.
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7 Structural plasticity as a connectivity optimization algorithm

Figure 7.1: Learning-to-learn loop: The optimizee is an ensemble of machine learning instances over sets of hyperpa-
rameters and training samples from tasks; Optimizer observes the ensemble and evolves the parameter sets to optimize
learning generalization.

The software framework that I used for this project, L2L [142], is an implementation of the

learning to learn concept. It is written in Python and in this project I have modified it and merged

with JUBE [100] in order to work on the supercomputers as a hyperparameter optimization

framework for HPC. The software was tested and refined to be deployed on the JURECA

supercomputer in the Jülich Supercomputic Centre in interactive and batch modes. The software

is simple to use and allows several instances of the optimizee to be executed with different

parameters in a embarrassingly parallel fashion. Each job run provides a parallel set of initial

states, from which the search algorithm will iteratively modify the parameters following a fitness

rule. This fitness rule is different for each network and tightly linked to the expected transitions
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in its dynamics.

The optimization algorithms used in the outer loop were evolutionary strategies , gradient descent

and simulated annealing. Please refer to Chapter 3 for more details about the aforementioned

optimization algorithms. By keeping track of changes provided to the structural plasticity

algorithm and by generating snapshots of the connectivity at given intervals, partial results

obtained from previous completed or suspended runs can be used as a starting point for a new job.

7.2.1 Simple network with two populations

The first network explored using hyperparameter optimization is a simple two populations network

with 1000 neurons, 80% excitatory and 20% inhibitory. The network is completely disconnected

at the beginning of the simulation and structural plasticity is allowed to create both excitatory and

inhibitory connections following a base homeostatic rule. Delays and weights are fixed for the

connections created.

The optimization task family consists on finding connectivity configurations which lead to defined

excitatory and inhibitory firing rates between 4 Hz - 6 Hz and 18 Hz - 22 Hz correspondingly. A

test task was defined in order to measure the global learning of the system. This task involves

taking the excitatory population to have a mean firing rate of 5Hz and the inhibitory population to

a mean firing rate of 10Hz. The network is evolved for 200cycles of 2s of biological time. Given

that different parameters of the growth rate can result in different simulation times, the maximum

simulation time allowed was set to 20 min. Simulations which did not finish on time were

penalized by the fitness rule. At the end of each cycle, the firing rate of all neurons is sampled.

The structural plasticity update step is setup to 1 s. Gradient descent, simulated annealing and

cross entropy were chosen as optimizer algorithms in the outer loop. Internally, structural

plasticity solves the multi-objective problem of finding a suitable structural configuration of the

network which takes each population to its target activity rate. In order to assess the performance

of each instance (named as individual in the following) of the network with specific parameters, a

multiobjective fitness rule was derived. Several compound fitness measures were tested for the

multi-objective optimization. A weighted measure which gives more importance to the fitness of

the excitatory than the inhibitory The fitness of each individual is formed 80% of the inverse of

the error between the average firing rate of the excitatory population and its target firing rate, and

20% of the inverse of the error between the average firing rate of the inhibitory population and its

target firing rate.
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Figure 7.2a, Figure 7.2b, and Figure 7.2c show results of the hyperparameter optimization process

using the different outer loop algorithms. Here it is important to notice that each dot in the plots

represents a full simulation with a particular set of parameters on a random scenario defined by

the family of tasks. All outer loop optimization algorithms find that the lower right corner of the

selected parameter space is of higher fitness. The parameter combinations get particularly higher

fitness when the ration between excitatory and inhibitory growth is between 4 and 5 to 1.

It is possible to see that the simulated annealing algorithm performs a more homogeneously

distributed search on the space. This has the advantage that local minima are easier to circumvent.

The algorithm still focuses its search efforts in the lower right corner of the parameter space

but uses some of the computational resources on areas of low interest. In the case of structural

plasticity, simulated annealing is a good candidate to perform initial explorations of vast parameter

spaces which provide a good idea of the shape of the space and where areas of interest are located.

As an opposite, the cross entropy algorithm is very effective in finding the area of interest with a

low amount of resources. This makes best use of computational resources but might miss other

interesting areas of the parameter space to be explored. Finally, the gradient descent algorithm

shows a behaviour in the middle between simulated annealing and cross entropy in terms of

exploration and focus. In all three algorithms we can see that there are parameter combinations

outside of the lower right corner which have high fitness. The random nature of the structural

plasticity algorithm and the task definition can also cause variability in the performance of the

model and thus make the exploration more challenging.

In Figures 7.2a to c the space to be explored was defined within biologically realistic boundaries.

Figure 7.2d shows the hyperparameter optimization being performed in a free parameter space in

order to show the natural tendency of gradient descent without pre-imposed knowledge. Here it

can be seen that the gradient descent algorithm tends to explore an area of the parameter space

where inhibitory growth is negative and excitatory growth is positive. This result support other

empirical findings reported in Chapter 4, Chapter 5, and Chapter 6 where it can be observed that

negative growth rates for inhibitory synapses support the generation of stable structures in the

networks.

Figure 7.3 shows the best individual for generation 0, 5, 10 and 15 using gradient descent. As it

can be observed, the ability of the network to reach the desired activity gets better as the gradient

descent algorithm finds more effective structural plasticity growth parameters.

All experiments were performed on the JURECA supercomputer of the Jülich Supercomputing

Centre in Jülich, Germany. Job allocations for this subproject consisted on 51 nodes, deploying 1
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Figure 7.2: Results of the parameter space exploration for the simple two populations network using a) simulated
annealing, b) cross entropy, and gradient descent within a c) restricted and an d) unrestricted parameter space. Each
dot in the plot represents a position in the parameter space described by the inhibitory growth rate on the y-axis and
the excitatory growth rate in the x-axis. The color of the dot represents the fitness of the structural plasticity algorithm
using an specific parameter combination to reach the desired activity regime. The fitness values are color coded from
cyan to pink using the color bar on the right.

outer loop optimization instance and 50 parallel instances of this network per generation making

full use of the 24 cores per node in JURECA. Each generation was forced to end after 20 minutes

of simulation. This enforcement was necessary because some parameters make the simulations

take longer. Simulations which did not finish on time were penalized by the fitness rule.
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Figure 7.3: Performance on the test task of the best individual using gradient descent for 5, 10, 15 and 20 generations.
Blue and red solid lines represent the average firing rate of the neurons in the excitatory and inhibitory populations
accordingly. The purple and black dotted lines represent the total connections created by the excitatory and inhibitory
populations accordingly. The light blue and red horizontal bars represent the desired target firing rate for the excitatory
and inhibitory populations accordingly.

7.2.2 Cortical microcircuit

In this second use case, we create a four layer network based on the model of the cortical

microcircuit proposed by [122]. Each layer contains one inhibitory and one excitatory population

of leaky integrate and fire neurons. In the simulations presented here, the network starts with the

0.1% of the original number of neurons in each population as in the previous study and without

any synaptic connections. For each population, we define a level of desired mean electrical

activity based on experimental literature and a growth curve which defines the dynamics of the

variation in the number of pre- and post-synaptic elements. These are again Gaussian shaped

curves. Simulations were initialized without connections and only the target firing rates were
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defined using the original model. Job allocations for this subproject consisted on 41 nodes,

deploying 1 instance of the outer loop and 8 parallel instances of this network per generation.

Each instance uses 5 full nodes using MPI. Each generation was forced to end after 60 min of

simulation. As in the first subproject, a penalization when the simulation did not finish on time

was added to the fitness rule. Inclusion of the shape of the power spectrum in the fitness function

was not performed during the time of this project, however this will be explored in future work.
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Figure 7.4: Parameter exploration for the cortical microcircuit task. Each dot in the plot represents a position in the
parameter space described by the inhibitory growth rate on the y-axis and the excitatory growth rate in the x-axis. The
color of the dot represents the fitness of the structural plasticity algorithm using an specific parameter combination to
reach the desired activity regime. The fitness values are color coded from cyan to pink using the color bar on the right.
In these tests, all excitatory populations from layers 2−3 to 6 share the same growth rate and the same applies to all
inhibitory populations.

Figure 7.4 shows the parameter exploration on 10 generations of the microcircuit model using

gradient descent. The fitness of each individual is formed 80% of the inverse of the error between

the average firing rate of the excitatory population and its target firing rate, and 20% of the inverse

of the error between the average firing rate of the inhibitory population and its target firing rate

summed up for all 4 layers. These results show that the activity requirements of this model

make best use of a more balanced inhibitory and excitatory growth rates as compared to the

simpler model with only two populations. This means that the best combination when using the

same values for all layers is to have inhibitory synapses grow just slightly faster as excitatory

synapses. The best parameter configuration depends on the flexibility we give to the model as

well as the functional and structural constraints we provide to the outer loop algorithm. Given

the tested setup, gradient descent provides both good exploration of the parameter space and fast

convergence.
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7.3 Future work

A model of the visual cortex of the macaque subdivided into 32 regions has been proposed in

[135]. The stabilization of such a complexly interconnected network into desired activity regimes

is not trivial, due to the influence that changes in one region can have on others, turning this into

a multi-objective optimization problem. Despite being firmly grounded in experimental data,

the network in its initial instantiation, exhibits bistable dynamics, with biologically unrealistic

high-activity states. Schuecker et al. [135] modify the connectivity of the model systematically

and, by using mean field theory, identify structural components of the network which have a

strong impact on its dynamics. This methodology forms a basis for a hypothesis about essential

features in the structure required to achieve realistic activity. This systematic reduction of the

models dimensionality allows them to remove its bistable behaviour. However, mean field

methods are severely constrained by the model complexity, and introduction of biologically

plausible mechanisms, such as adaptation are difficult to include in a mean-field framework. In

this subproject, we propose to use structural plasticity, guided by an optimizer, to guid such a

large-scale network intro desired activity regimes.

Again, the optimizer would change connection probabilities between populations in the model.

The goal would be to achieve the empirically known firing rates of the respective populations.

A similar configuration has already been tested in [114] where 68 regions each composed of

two populations were interconnected using DTI data for a whole human brain simulation at

region scale. This work has shown that this strategy enables the identification of parameters for

homeostatic rules which can reach one of multiple stable configurations of the network.

7.4 Discussion

The results of the experiments I present here elucidate how variation in the connectivity of neural

networks is involved in learning and activity regulation. Structural plasticity is a phenomenon

that is still in the early stages of research, particularly regarding theoretical/computational aspects.

This is partially because a ‘naive’ implementation of such algorithms define computationally

intensive processes. Additionally, large-scale biological neuronal networks are very complex

systems which are difficult to characterize. If connectivity changes are taken into consideration,

the complexity of the system can grow as a power of the number of nodes. With this project

I have explored the potential of using both machine learning from computational science and
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structural plasticity inspired by neuroscience (but not necessarily physiologically realistic) to

understand the sensitivity of neural networks to changes in the topology in a systematic and

reproducible fashion. In addition, various structural plasticity rules found by the optimization

process show desirable effects on global network properties. For example, it is possible to see

that there are relationships between inhibition and excitation for every network which must be

preserved in order for the network to evolve into a stable configuration. These links must still be

further analyzed and linked to experimental data which can give more insight on the homeostatic

regulations that the brain observes during critical periods of plasticity. Analyzing these rules will

contribute to the ongoing exploration of the relevance of structural plasticity for neuronal network

dynamics.
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8.1 Conclusions and discussion

The structural changes that neurons undergo from brain development through their lifespan is

called structural plasticity. Structural plasticity plays an important role in development, healing

and learning. In my thesis work I present a model of structural plasticity which can be used to

modify, generate and optimize connectivity in simulations of spiking neural networks. This model

has been integrated into NEST, a well established neural network simulator, in order to help the

study and understanding of the relationships between structure and function in our brains. In my

work I use this model as an optimization and control algorithm to fill in missing connectivity

information for the simulation of neural circuits which are of interest for the neuroscientific

community. I also worked in the develpment of software tools to visualize and interact with

the structural plasticity algorithm which allow scientists to exploit the algorithm’s potential

and apply it to solve their specific questions. Besides building a software infrastructure for

modeling, simulating, visualizing and analyzing plasticity in the brain, I also applied this tools

to specific applications. I explored a clinical applications of the model focusing on the role

of structural changes induced by Coordinated Reset Therapy for the treatment of Parkinson’s

disease. I also worked on another, more abstract application on a computer science, where I used

structural plasticity as optimization algorithm. By using hyperparameter optimization algorithms

in coordination with structural plasticity, I propose a research platform to study the effects of

evolutionary tuning of learning mechanisms in the brain. In this thesis I have presented structural

plasticity as a control system in neural networks which aims at optimizing its connectivity. I’ve

shown how the implementation of a specific model of structural plasticity in NEST can be used to

both, simulate progressive changes in the connections forming a neural network and to generate

such connections between completely disconnected sets of neurons. With this work I provide a
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general overview of a framework for simulation and analysis of structural plasticity with potential

applications not only in neuroscience but also for machine learning and optimization.

Current implementation: results, performance and limitations This implementation

uses only random selection of targets and does not take into account the distance between neurons.

The algorithm was implemented in such a way in order to enhance its performance for large scale

networks. The work described in Rinke et al. [125] describes a scalable algorithm for introducing

distance dependency in such a model of structural plasticity. In the future, this algorithm can be

included into NEST in order to consider such constraints while maintaining a good performance

at HPC scale.

Even though the current implementation of structural plasticity in NEST does not consider the

weight when deciding which synapses to delete, this is compensated by other aspects of the

algorithm. In this implementation, the system may create any number of connections between

two neurons. By increasing the amount of connections, the strength of the contributions between

both gets reinforced or reduced. This is automatically achieved as the target of reaching a given

firing rate by each neuron is pursued. Even when the work in Chapter 6 shows simulations

incorporating both types of plasticity, the interaction between STDP and structural plasticity is

still not fully achieved. The ideal implementation would be that structural plasticity selects for

deletion always the weaker synapses with a higher priority than stronger synapses. This is still

work in progress and is subject of future work.

There has been already interesting findings in the computational neuroscience community using

the structural plasticity implementation in NEST. The work by Gallinaro and Rotter [54] shows

how this implementation is able to reproduce connectivity features observed experimentally in

the visual cortex of rodents. Lu et al. [98] and Lu et al. [99] also show how experimentally

measured changes in networks after stimulation can be reproduced with this framework. The

role of structural plasticity in the formation of memory engrams has also been investigated and

discussed in Gallinaro et al. [55] using the implementation I presented in this thesis. These

examples confirm the variety of applications and new research directions enabled by the work I

have presented in this thesis.

In parallel to the development of this work, collaborations have emerged with the groups devel-

oping neuromorphic hardware within the Human Brain Project. There have been discussions

about a shared set of directives to describe the structural plasticity mechanisms in both software

and neuromorphic hardware. Specifically, the implementation of such directives into a modeling
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language such a PyNN, which can be used by BrainScales, SpiNNaker and NEST to define net-

works. This will help keep a common language among simulators/emulators which can be used

later as a base to compare the different implementations of structural plasticity. I co-organized

several workshops [119] in order to discuss requirements, challenges and applications together

with developers and users around the topic of structural plasticity. This allowed me to have

continuous feedback on the framework usability but also interactions and developments in other

research groups. Examples of these parallel developments are the work from Bogdan et al. [15]

and Schemmel et al. [132] on neuromorphic hardware.

The work in Bogdan et al. [15] and Bogdan and Furber [14] describes the implementation of

structural plasticity in SpiNNaker. It includes distance dependency in the selection of targets and

has a limit in the total number of connections which can be made per neuron. The restrictions

imposed by the neuromorphic chip limit the total number of neurons which can be simulated.

However, under these parameters, the performance is very high, allowing almost real time

simulations. This implementation has been applied to motion recognition and learning of rules to

win simple games like pong.

An model of structural plasticity in BrainScales Schemmel et al. [132] has also been successfully

implemented and used for machine learning tasks. BrainScales is an analog emulation system

with digital interfaces. The analog nature of such a system induces some inhomogeneities in each

chip which have to be taken into consideration during emulations of a network. An interesting

application of structural plasticity in this architecture is that they have used it to automatically

learn which connections are physically more suitable for a given network model [12]. This is a

unique usage of the structural plasticity concept which links to the analog nature of human brains

as well.

Visualization and steering Visualization is an essential tool to understand how these com-

plex simulations of neural networks behave. The dynamics in the connectivity which structural

plasticity introduces, make it even more important to observe the network in order to understand

its configuration and behaviour. In the end, the goal is to be able to relate how changes in the

connectivity affect the activity in the network. If we managed to elucidate these relationships,

we would be able to better understand why our brains are wired as they are and, hopefully, how

higher function emerges as well.

The brain is a very robust system, resilient to errors, unknown input, damage, and stressing situa-

tions. It seems reasonable to think that in order to achieve such a high level of resilience, the brain
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has a redundant configuration scheme which is prepared for failures in single circuits. For this

reason, several connectivity configurations might in the end provide similar output under a single

measure of performance. In this thesis I have presented an interactive steering and visualization

framework which assist the neuroscientists in finding and understanding connectivity configura-

tion in their models. With this system it is possible to navigate the connectivity configurations

and select the ones which are biologically and functionally meaningful for answering a particular

scientific question. In combination with the MSPViz tool, the scientists can also understand

and analyze with even more detail the changes in the connectivity performed by the structural

plasticity algorithm.

Clinical applications In this thesis I have also shown an application of the structural plasticity

algorithm to a clinical problem. The work described in Chapter 6 provides to the scientific

community a simulation framework to study the impact of slow structural changes in a therapeutic

setup. By including structural and synaptic plasticity in this model, the user can observe and

analyze the impact of deep brain stimulation in a realistic model of the Sub Thalamic Nucleus

and the Globus Plidus externus. In this work I have found that adding structural plasticity

as a homeostatic controller in our simulations allows us to reproduce the long lasting effects

of Coordinated Reset Therapy. This supports our initial theory that waiting times between

therapeutic stimulation are to be considered part of the therapy and should be well defined in

order to optimize its benefits. The way I have combined short and long time scale plasticity effects

into NEST simulations allows to keep computational performance and biological meaningfulness.

Learning and optimization The last part of this thesis is related to learning and optimization

of network connectivity to reach particular dynamical features of the network. Using the learning

to learn paradigm, we have optimized the hyperparameters of the structural plasticity algorithm

in order to achieve two goals, enhanced correlations and optimized connectivity. In the future,

this work can be applied to more defined tasks such as pattern recognition and information

coding, among others. Learning to learn allows us to unveil the not so evident links between the

homeostatic rules and the end dynamics of the system. The more complex the target measure for

structural plasticity is, the more difficult it is to create a direct rule between connectivity changes

(control) and the desired output (error reduction).
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Final remarks In the introduction, I listed some essential features which define structural

plasticity. The algorithm that I have implemented, used, analyzed, optimized and discussed

in this thesis is not complete. The algorithm already incorporates most of the elements in the

aforementioned list, however, there is room for improvement in the performance and ways in

which the structural changes take place. For example, the distance dependency factor in the

selection of targets is still to be incorporated and defined. The performance of the algorithm can

also be enhanced by introducing simplifications in the communication of connectivity data. Even

though the applications and the implementation showcased here are focused on point neurons, all

the concepts developed here can be applied also to morphologically detailed neurons. This can

be done by the integration of models for axonal and dendritic growth and spatial distribution of

synaptic contacts along the morphology of the neuron.

This thesis was carried out in the context of the Human Brain Project and develops on a topic

which has been so far not sufficiently addressed by the computational neuroscience community.

In this same context, this thesis work has been a point of interaction with similar developments

in simulations [15] and emulations [132] on neuromorphic hardware. It is currently a topic of

discussion if a stand alone simulator of structural plasticity, compatible with different simulators

and even with neuromorphic hardware, is a good way to implement future developments. A

standard definition of structural plasticity in PyNN, as mentioned in [15], is also considered as a

desirable next step in order to ease the usability and adoption of this model.

Adding dynamic connectivity to a neural network simulation is not straight forward. It impacts

the performance of the simulations as well as the dynamics of the system and our ability to use

well established analytical tools to understand the behaviour of the network. From the point in

time when the brain starts to develop, the building of the connections between neurons has a

well defined set of rules which are still not completely understood today. The mature brain also

changes in a consistent way. It is undeniable that structural changes take place in the brain during

the whole lifespan and that they are part of critical functions such as learning and healing. With

this thesis work I have addressed both the implementation and analysis of a model of structural

plasticity which can be used in large scale neural networks. I have also discussed potential

applications of such an algorithm and defined its current limitations. The work exposed here sets

ground and motivates future implementations of such an algorithm on software and neuromorphic

hardware. With these tools is now possible to better understand the dynamics of connectivity in

neural networks and the links between structure and function in the brain.

144



List of Figures

2.1 A) Schematic drawing of a neuron and the basic parts of most interest for this

thesis work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Growth rate curves and their effect on firing rate and synaptic element creation /

deletion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 a) Example of a linear growth function. . . . . . . . . . . . . . . . . . . . . . 25

3.1 Diagram of a excitatory neuron from the perspective of control engineering. . . 39

3.2 Diagram of two populations from the perspective of control engineering. . . . . 40

4.1 Diagram of the implementation of the structural plasticity model in NEST. . . . 44

4.2 Integration of the new structural plasticity calls into the normal simulation flow

of NEST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Results of the scalability tests performed with structural plasticity. . . . . . . . 52

4.4 Upper panel: Firing rate and numbers of connections as functions of time in a

simple two population network. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Growth curves for each synaptic element in each layer of the cortical microcircuit

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Evolution of the mean firing rate in each layer of the cortical microcircuit model. 58

4.7 Evolution of connectivity in the microcircuit model resolved by source and target

population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Comparison of the normalized connectivity in the microcircuit model between

the results obtained with the structural plasticity framework (red) and the values

reported by Potjans and Diesmann [122] (blue). . . . . . . . . . . . . . . . . . 61

4.9 Evolution of connectivity through time for each layer in the cortical microcircuit

model with an unstable set of parameters. . . . . . . . . . . . . . . . . . . . . 62

145



LIST OF FIGURES

4.10 Evolution of firing rate in each layer of the cortical microcircuit model with an

unstable set of parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.11 Evolution of firing rate in each layer of the cortical microcircuit model with

partially pre-connected initial conditions. . . . . . . . . . . . . . . . . . . . . 64

4.12 Visualization of the abstract ”morphology” of individual neurons. . . . . . . . 70

4.13 General view of the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.14 Selection of a group of neurons including a non functional hub. . . . . . . . . . 72

4.15 View of a neuron which has turned into a non functional hub. . . . . . . . . . . 73

5.1 Firing rate in spikes/s of simulated brain regions (upper left) and total connections

(upper right) are retrieved while a NEST simulation is performed. . . . . . . . 84

5.2 Previous method of visualizing simulations: visualization of the simulation as

performed before the presented tool was developed. . . . . . . . . . . . . . . . 85

5.3 Evolution of firing rate and connectivity for the two population example. . . . . 87

5.4 Evolution of growth rate (top), firing rate (middle) and outgoing connections

(bottom) for six different trajectories (a-f) in the two population model use case,

excitatory (red) and inhibitory (blue). . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Use case 1 inspired by Deco et al. [36] whole brain model. . . . . . . . . . . . 92

5.6 Total number of connections for selected regions (0−10) as a function of biolog-

ical time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Number of connections (top) and firing rate (bottom) shown in comparison of

four regions (0,10,25,63). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Connectivity update rule employed in the algorithms proposed in Deco et al. [36]

and Schirner et al. [133], where a fixed value is added or subtracted iteratively

to the inner inhibitory connectivity until convergence to the desired firing rate is

achieved in each simulated region. . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Execution time as a function of the number of compute nodes for varying numbers

of neurons per population: 50, 100, 200, 400, 800, and 8,000; curves shaded

from light to dark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Structure of the model network. . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Growth rate curve determining the speed of creation and deletion of synaptic

elements in the structural plasticity model. . . . . . . . . . . . . . . . . . . . . 114

146



LIST OF FIGURES

6.3 Synchronization, firing rate and connections for 2 long CR sessions without SP. 118

6.4 Synchronization, firing rate and connections for 2 long CR sessions with SP. . . 119

6.5 Synchronization, firing rate and connections for 3 CR sessions with SP compared

to the non SP scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Growth curve, synchronization and firing rate for a simulation where all excitatory

synapses from STN to STN and STN to GPe are regulated by structural plasticity. 121

6.7 Growth curve, synchronization and firing rate for a simulation with high growth

and deletion rate (1×10−3) for the STN to STN synapses. . . . . . . . . . . . 122

6.8 Growth curve, synchronization and firing rate for a simulation with same config-

uration as protocol 2 but higher rewiring values. . . . . . . . . . . . . . . . . . 123

6.9 Growth curve, synchronization and firing rate for a simulation with low growth

and deletion rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1 Learning-to-learn loop: The optimizee is an ensemble of machine learning in-

stances over sets of hyperparameters and training samples from tasks; Optimizer

observes the ensemble and evolves the parameter sets to optimize learning gener-

alization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Results of the parameter space exploration for the simple two populations network

using a) simulated annealing, b) cross entropy, and gradient descent within a c)

restricted and an d) unrestricted parameter space. . . . . . . . . . . . . . . . . 135

7.3 Performance on the test task of the best individual using gradient descent for 5,

10, 15 and 20 generations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Parameter exploration for the cortical microcircuit task. . . . . . . . . . . . . . 137

147



List of Tables

2.1 Examples of simulators for the different scales of the brain. . . . . . . . . . . . 27

4.1 Parameters for the homeostatic growth rules for each type of neuron and synaptic

element in the two population network model. . . . . . . . . . . . . . . . . . . 51

4.2 Parameters used for simulations of the cortical microcircuit. . . . . . . . . . . 57

5.1 Network parameters for the first and second use cases. . . . . . . . . . . . . . 86

5.2 Network parameters taken from Deco et al. [35] for each region. . . . . . . . . 91

5.3 Estimation on the complexity to adapt the nett messaging framework to different

steering and visualization use cases. . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Parameters for the definition of STN and GPe neurons. . . . . . . . . . . . . . 112

148



Bibliography

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,

Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. URL http://tensorflow.org/. Software available from tensorflow.org.

[2] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

A system for large-scale machine learning. In 12th {USENIX} symposium on operating

systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[3] Greg Abram and Lloyd Treinish. An extended data-flow architecture for data analysis

and visualization. In Proceedings of the 6th Conference on Visualization’95, page 263,

Washington, DC, USA, 1995. IEEE Computer Society. ISBN 0-8186-7187-4.

[4] N. A. Akar, B. Cumming, V. Karakasis, A. Küsters, W. Klijn, A. Peyser, and S. Yates. Arbor
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