000901977 001__ 901977
000901977 005__ 20211024011155.0
000901977 0247_ $$2doi$$a10.1101/2021.08.24.457462
000901977 0247_ $$2Handle$$a2128/28827
000901977 0247_ $$2altmetric$$aaltmetric:112371119
000901977 037__ $$aFZJ-2021-03951
000901977 1001_ $$0P:(DE-Juel1)174594$$aOsthege, Michael$$b0
000901977 245__ $$abletl - A Python Package for Integrating Microbioreactors in the Design-Build-Test-Learn Cycle
000901977 260__ $$c2021
000901977 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1634737029_19755
000901977 3367_ $$2ORCID$$aWORKING_PAPER
000901977 3367_ $$028$$2EndNote$$aElectronic Article
000901977 3367_ $$2DRIVER$$apreprint
000901977 3367_ $$2BibTeX$$aARTICLE
000901977 3367_ $$2DataCite$$aOutput Types/Working Paper
000901977 520__ $$aMicrobioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python-based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline-based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time-variable specific growth rate based on a novel method of unsupervised switchpoint detection with Student-t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time-variable growth rate with Bayesian uncertainty quantification and automatically detect switch-points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, t-distributed Stochastic Neighbor Embedding (t-SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.
000901977 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000901977 588__ $$aDataset connected to CrossRef
000901977 7001_ $$0P:(DE-Juel1)168172$$aTenhaef, Niklas$$b1
000901977 7001_ $$0P:(DE-Juel1)173672$$aZyla, Rebecca$$b2
000901977 7001_ $$0P:(DE-Juel1)177776$$aMüller, Carolin$$b3$$ufzj
000901977 7001_ $$0P:(DE-Juel1)165723$$aHemmerich, Johannes$$b4
000901977 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b5
000901977 7001_ $$0P:(DE-Juel1)129050$$aNoack, Stephan$$b6
000901977 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b7$$eCorresponding author
000901977 773__ $$a10.1101/2021.08.24.457462
000901977 8564_ $$uhttps://juser.fz-juelich.de/record/901977/files/2021.08.24.457462v1.full.pdf$$yOpenAccess
000901977 909CO $$ooai:juser.fz-juelich.de:901977$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000901977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174594$$aForschungszentrum Jülich$$b0$$kFZJ
000901977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168172$$aForschungszentrum Jülich$$b1$$kFZJ
000901977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177776$$aForschungszentrum Jülich$$b3$$kFZJ
000901977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b5$$kFZJ
000901977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129050$$aForschungszentrum Jülich$$b6$$kFZJ
000901977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b7$$kFZJ
000901977 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000901977 9141_ $$y2021
000901977 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901977 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000901977 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000901977 9801_ $$aFullTexts
000901977 980__ $$apreprint
000901977 980__ $$aVDB
000901977 980__ $$aUNRESTRICTED
000901977 980__ $$aI:(DE-Juel1)IBG-1-20101118