000901989 001__ 901989
000901989 005__ 20240507205536.0
000901989 0247_ $$2doi$$a10.1093/insilicoplants/diab028
000901989 0247_ $$2Handle$$a2128/28839
000901989 0247_ $$2altmetric$$aaltmetric:114228920
000901989 0247_ $$2WOS$$aWOS:000745293200011
000901989 037__ $$aFZJ-2021-03958
000901989 041__ $$aEnglish
000901989 082__ $$a004
000901989 1001_ $$0P:(DE-Juel1)165987$$aLandl, Magdalena$$b0$$eCorresponding author
000901989 245__ $$aSimulating rhizodeposition patterns around growing and exuding root systems
000901989 260__ $$a[Oxford]$$bOxford University Press$$c2021
000901989 3367_ $$2DRIVER$$aarticle
000901989 3367_ $$2DataCite$$aOutput Types/Journal article
000901989 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715083563_16042
000901989 3367_ $$2BibTeX$$aARTICLE
000901989 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901989 3367_ $$00$$2EndNote$$aJournal Article
000901989 520__ $$aIn this study, we developed a novel model approach to compute the spatio-temporal distribution patterns of rhizodeposits around growing root systems in three dimensions. This model approach allows us to study the evolution of rhizodeposition patterns around complex three-dimensional root systems. Root systems were generated using the root architecture model CPlantBox. The concentration of rhizodeposits at a given location in the soil domain was computed analytically. To simulate the spread of rhizodeposits in the soil, we considered rhizodeposit release from the roots, rhizodeposit diffusion into the soil, rhizodeposit sorption to soil particles and rhizodeposit degradation by microorganisms. To demonstrate the capabilities of our new model approach, we performed simulations for the two example rhizodeposits mucilage and citrate and the example root system Vicia faba. The rhizodeposition model was parameterized using values from the literature. Our simulations showed that the rhizosphere soil volume with rhizodeposit concentrations above a defined threshold value (i.e. the rhizodeposit hotspot volume) exhibited a maximum at intermediate root growth rates. Root branching allowed the rhizospheres of individual roots to overlap, resulting in a greater volume of rhizodeposit hotspots. This was particularly important in the case of citrate, where overlap of rhizodeposition zones accounted for more than half of the total rhizodeposit hotspot volumes. Coupling a root architecture model with a rhizodeposition model allowed us to get a better understanding of the influence of root architecture as well as rhizodeposit properties on the evolution of the spatio-temporal distribution patterns of rhizodeposits around growing root systems.
000901989 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000901989 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901989 7001_ $$0P:(DE-Juel1)185044$$aHaupenthal, Adrian$$b1
000901989 7001_ $$0P:(DE-Juel1)187335$$aLeitner, Daniel$$b2
000901989 7001_ $$0P:(DE-HGF)0$$aKroener, Eva$$b3
000901989 7001_ $$00000-0003-2020-3262$$aVetterlein, Doris$$b4
000901989 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b5
000901989 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6
000901989 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b7
000901989 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b8
000901989 773__ $$0PERI:(DE-600)3019806-9$$a10.1093/insilicoplants/diab028$$gp. diab028$$n2$$pdiab028$$tIn silico plants$$v3$$x2517-5025$$y2021
000901989 8564_ $$uhttps://juser.fz-juelich.de/record/901989/files/Simulating%20rhizodeposition%20patterns%20around%20growing%20and%20exuding%20root%20systems.pdf$$yOpenAccess
000901989 909CO $$ooai:juser.fz-juelich.de:901989$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000901989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165987$$aForschungszentrum Jülich$$b0$$kFZJ
000901989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185044$$aForschungszentrum Jülich$$b1$$kFZJ
000901989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187335$$aForschungszentrum Jülich$$b2$$kFZJ
000901989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b5$$kFZJ
000901989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000901989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b7$$kFZJ
000901989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b8$$kFZJ
000901989 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000901989 9141_ $$y2021
000901989 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000901989 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-11
000901989 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-11
000901989 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901989 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-11
000901989 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-11
000901989 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-11
000901989 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIN SILICO PLANTS : 2022$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-15T16:13:56Z
000901989 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-15T16:13:56Z
000901989 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-15T16:13:56Z
000901989 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-09-15T16:13:56Z
000901989 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000901989 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000901989 920__ $$lyes
000901989 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000901989 980__ $$ajournal
000901989 980__ $$aVDB
000901989 980__ $$aI:(DE-Juel1)IBG-3-20101118
000901989 980__ $$aUNRESTRICTED
000901989 9801_ $$aFullTexts