000901998 001__ 901998
000901998 005__ 20240712100847.0
000901998 0247_ $$2doi$$a10.5194/acp-20-15379-2020
000901998 0247_ $$2ISSN$$a1680-7316
000901998 0247_ $$2ISSN$$a1680-7324
000901998 0247_ $$2Handle$$a2128/28986
000901998 0247_ $$2altmetric$$aaltmetric:95814036
000901998 0247_ $$2WOS$$aWOS:000599523900003
000901998 037__ $$aFZJ-2021-03964
000901998 082__ $$a550
000901998 1001_ $$0P:(DE-HGF)0$$aWoiwode, Wolfgang$$b0$$eCorresponding author
000901998 245__ $$aTechnical note: Lowermost-stratosphere moist bias in ECMWF IFS model diagnosed from airborne GLORIA observations during winter–spring 2016
000901998 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000901998 3367_ $$2DRIVER$$aarticle
000901998 3367_ $$2DataCite$$aOutput Types/Journal article
000901998 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636550557_7899
000901998 3367_ $$2BibTeX$$aARTICLE
000901998 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000901998 3367_ $$00$$2EndNote$$aJournal Article
000901998 520__ $$aNumerical weather forecast systems like the ECMWF IFS (European Centre for Medium-Range Weather Forecasts – Integrated Forecasting System) are known to be affected by a moist bias in the extratropical lowermost stratosphere (LMS) which results in a systematic cold bias there. We use high-spatial-resolution water vapor measurements by the airborne infrared limb-imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) during the PGS (POLSTRACC/GW-LCYCLE-II/SALSA) campaign to study the LMS moist bias in ECMWF analyses and 12 h forecasts from January to March 2016. Thereby, we exploit the two-dimensional observational capabilities of GLORIA, when compared to in situ observations, and the higher vertical and horizontal resolution, when compared to satellite observations. Using GLORIA observations taken during five flights in the polar sub-vortex region around Scandinavia and Greenland, we diagnose a systematic moist bias in the LMS exceeding +50 % (January) to +30 % (March) at potential vorticity levels from 10 PVU (∼ highest level accessed with suitable coverage) to 7 PVU. In the diagnosed time period, the moist bias decreases at the highest and driest air masses observed but clearly persists at lower levels until mid-March. Sensitivity experiments with more frequent temporal output, and lower or higher horizontal and vertical resolution, show the short-term forecasts to be practically insensitive to these parameters on timescales of < 12 h. Our results confirm that the diagnosed moist bias is already present in the initial conditions (i.e., the analysis) and thus support the hypothesis that the cold bias develops as a result of forecast initialization. The moist bias in the analysis might be explained by a model bias together with the lack of water vapor observations suitable for assimilation above the tropopause.
000901998 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000901998 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000901998 7001_ $$00000-0003-0936-0216$$aDörnbrack, Andreas$$b1
000901998 7001_ $$0P:(DE-HGF)0$$aPolichtchouk, Inna$$b2
000901998 7001_ $$00000-0002-9642-1955$$aJohansson, Sören$$b3
000901998 7001_ $$00000-0002-6510-8181$$aHarvey, Ben$$b4
000901998 7001_ $$00000-0002-4174-9531$$aHöpfner, Michael$$b5
000901998 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b6
000901998 7001_ $$00000-0003-2016-2800$$aFriedl-Vallon, Felix$$b7
000901998 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-15379-2020$$gVol. 20, no. 23, p. 15379 - 15387$$n23$$p15379 - 15387$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000901998 8564_ $$uhttps://juser.fz-juelich.de/record/901998/files/acp-20-15379-2020.pdf$$yOpenAccess
000901998 909CO $$ooai:juser.fz-juelich.de:901998$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000901998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b6$$kFZJ
000901998 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000901998 9141_ $$y2021
000901998 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000901998 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000901998 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000901998 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000901998 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000901998 920__ $$lyes
000901998 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000901998 9801_ $$aFullTexts
000901998 980__ $$ajournal
000901998 980__ $$aVDB
000901998 980__ $$aUNRESTRICTED
000901998 980__ $$aI:(DE-Juel1)IEK-7-20101013
000901998 981__ $$aI:(DE-Juel1)ICE-4-20101013