000902024 001__ 902024
000902024 005__ 20240712113153.0
000902024 0247_ $$2doi$$a10.1016/j.electacta.2021.139413
000902024 0247_ $$2ISSN$$a0013-4686
000902024 0247_ $$2ISSN$$a1873-3859
000902024 0247_ $$2Handle$$a2128/29545
000902024 0247_ $$2altmetric$$aaltmetric:115439701
000902024 0247_ $$2WOS$$aWOS:000718162000006
000902024 037__ $$aFZJ-2021-03982
000902024 082__ $$a540
000902024 1001_ $$0P:(DE-Juel1)180638$$aZhang, Yufan$$b0$$ufzj
000902024 245__ $$aCriterion for Finding the Optimal Electrocatalyst at Any Overpotential
000902024 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000902024 3367_ $$2DRIVER$$aarticle
000902024 3367_ $$2DataCite$$aOutput Types/Journal article
000902024 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640013535_27899
000902024 3367_ $$2BibTeX$$aARTICLE
000902024 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902024 3367_ $$00$$2EndNote$$aJournal Article
000902024 520__ $$aThe generic volcano plot is a widely employed practical tool to display and compare the activity of different electrocatalysts in dependence of a small number of descriptors. It is known that the apex of the volcano curve shifts with applied potential. However, the trend of the potential-dependent shift of the volcano apex has remained unclear. Herein, we address this question for a two-step electrocatalytic reaction. With the transfer coefficient assumed as 1/2, our analysis reveals that the adsorbate coverage at the volcano apex equals 1/2 regardless of potential. We present a criterion to predict the direction and magnitude of the apex shift as a function of the activation energies of the two steps. Thereafter, the criterion is extended to the oxygen reduction reaction. The influence of the transfer coefficient and the potential of zero charge on the volcano plot is revealed. Implications of the presented criterion for targeted design of electrocatalysts are discussed.
000902024 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000902024 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902024 7001_ $$0P:(DE-Juel1)185067$$aHuang, Jun$$b1$$ufzj
000902024 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b2$$eCorresponding author$$ufzj
000902024 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2021.139413$$gp. 139413 -$$p139413 -$$tElectrochimica acta$$v400$$x0013-4686$$y2021
000902024 8564_ $$uhttps://juser.fz-juelich.de/record/902024/files/Invoice_OAD0000154536.pdf
000902024 8564_ $$uhttps://juser.fz-juelich.de/record/902024/files/1-s2.0-S0013468621017035-main.pdf$$yOpenAccess
000902024 8564_ $$uhttps://juser.fz-juelich.de/record/902024/files/Criterion%20for%20finding%20the%20optimal.docx$$yOpenAccess
000902024 8767_ $$8OAD0000154536$$92021-10-21$$d2021-10-28$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr.: 1200172365
000902024 909CO $$ooai:juser.fz-juelich.de:902024$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000902024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180638$$aForschungszentrum Jülich$$b0$$kFZJ
000902024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185067$$aForschungszentrum Jülich$$b1$$kFZJ
000902024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b2$$kFZJ
000902024 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000902024 9141_ $$y2021
000902024 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000902024 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902024 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2019$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2019$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902024 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000902024 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000902024 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000902024 920__ $$lyes
000902024 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000902024 9801_ $$aAPC
000902024 9801_ $$aFullTexts
000902024 980__ $$ajournal
000902024 980__ $$aVDB
000902024 980__ $$aUNRESTRICTED
000902024 980__ $$aI:(DE-Juel1)IEK-13-20190226
000902024 980__ $$aAPC
000902024 981__ $$aI:(DE-Juel1)IET-3-20190226