001     902048
005     20211130111058.0
024 7 _ |a 10.1093/chemse/bjaa081
|2 doi
024 7 _ |a 0379-864X
|2 ISSN
024 7 _ |a 1464-3553
|2 ISSN
024 7 _ |a 2128/29011
|2 Handle
024 7 _ |a altmetric:96673530
|2 altmetric
024 7 _ |a pmid:33367502
|2 pmid
024 7 _ |a WOS:000645030100001
|2 WOS
037 _ _ |a FZJ-2021-03996
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gerkin, Richard C
|0 0000-0002-2940-3378
|b 0
245 _ _ |a Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms
260 _ _ |a Oxford
|c 2021
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636707359_30172
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0–100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19−; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19− groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: −82.5 ± 27.2 points; C19−: −59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0–10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ohla, Kathrin
|0 P:(DE-Juel1)165362
|b 1
700 1 _ |a Veldhuizen, Maria G
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Joseph, Paule V
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kelly, Christine E
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bakke, Alyssa J
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Steele, Kimberley E
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Farruggia, Michael C
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pellegrino, Robert
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pepino, Marta Y
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bouysset, Cédric
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Soler, Graciela M
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Pereda-Loth, Veronica
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Dibattista, Michele
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Cooper, Keiland W
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Croijmans, Ilja
|0 0000-0001-9812-0040
|b 15
700 1 _ |a Di Pizio, Antonella
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Ozdener, Mehmet Hakan
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Fjaeldstad, Alexander W
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Lin, Cailu
|0 0000-0001-8909-7758
|b 19
700 1 _ |a Sandell, Mari A
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Singh, Preet B
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Brindha, V Evelyn
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Olsson, Shannon B
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Saraiva, Luis R
|0 0000-0003-4079-0396
|b 24
700 1 _ |a Ahuja, Gaurav
|0 0000-0002-2837-9361
|b 25
700 1 _ |a Alwashahi, Mohammed K
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Bhutani, Surabhi
|0 P:(DE-HGF)0
|b 27
700 1 _ |a D’Errico, Anna
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Fornazieri, Marco A
|0 0000-0001-5213-2337
|b 29
700 1 _ |a Golebiowski, Jérôme
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Dar Hwang, Liang
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Öztürk, Lina
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Roura, Eugeni
|0 0000-0002-9073-9946
|b 33
700 1 _ |a Spinelli, Sara
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Whitcroft, Katherine L
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Faraji, Farhoud
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Fischmeister, Florian Ph S
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Heinbockel, Thomas
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Hsieh, Julien W
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Huart, Caroline
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Konstantinidis, Iordanis
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Menini, Anna
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Morini, Gabriella
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Olofsson, Jonas K
|0 0000-0002-0856-0569
|b 44
700 1 _ |a Philpott, Carl M
|0 0000-0002-1125-3236
|b 45
700 1 _ |a Pierron, Denis
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Shields, Vonnie D C
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Voznessenskaya, Vera V
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Albayay, Javier
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Altundag, Aytug
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Bensafi, Moustafa
|0 0000-0002-2991-3036
|b 51
700 1 _ |a Bock, María Adelaida
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Calcinoni, Orietta
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Fredborg, William
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Laudamiel, Christophe
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Lim, Juyun
|0 0000-0002-1781-8912
|b 56
700 1 _ |a Lundström, Johan N
|0 0000-0002-3529-8981
|b 57
700 1 _ |a Macchi, Alberto
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Meyer, Pablo
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Moein, Shima T
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Santamaría, Enrique
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Sengupta, Debarka
|0 0000-0002-6353-5411
|b 62
700 1 _ |a Rohlfs Dominguez, Paloma
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Yanik, Hüseyin
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Hummel, Thomas
|0 P:(DE-HGF)0
|b 65
700 1 _ |a Hayes, John E
|0 0000-0001-9065-6326
|b 66
700 1 _ |a Reed, Danielle R
|0 0000-0002-4374-6107
|b 67
700 1 _ |a Niv, Masha Y
|0 0000-0001-8275-8795
|b 68
700 1 _ |a Munger, Steven D
|0 P:(DE-HGF)0
|b 69
700 1 _ |a Parma, Valentina
|0 0000-0003-0276-7072
|b 70
|e Corresponding author
700 1 _ |a Boesveldt, Sanne
|0 P:(DE-HGF)0
|b 71
700 1 _ |a de Groot, Jasper H B
|0 P:(DE-HGF)0
|b 72
700 1 _ |a Dinnella, Caterina
|0 P:(DE-HGF)0
|b 73
700 1 _ |a Freiherr, Jessica
|0 P:(DE-HGF)0
|b 74
700 1 _ |a Laktionova, Tatiana
|0 P:(DE-HGF)0
|b 75
700 1 _ |a Marino, Sajidxa
|0 P:(DE-HGF)0
|b 76
700 1 _ |a Monteleone, Erminio
|0 P:(DE-HGF)0
|b 77
700 1 _ |a Nunez-Parra, Alexia
|0 P:(DE-HGF)0
|b 78
700 1 _ |a Abdulrahman, Olagunju
|0 P:(DE-HGF)0
|b 79
700 1 _ |a Ritchie, Marina
|0 P:(DE-HGF)0
|b 80
700 1 _ |a Thomas-Danguin, Thierry
|0 P:(DE-HGF)0
|b 81
700 1 _ |a Walsh-Messinger, Julie
|0 P:(DE-HGF)0
|b 82
700 1 _ |a Al Abri, Rashid
|0 P:(DE-HGF)0
|b 83
700 1 _ |a Alizadeh, Rafieh
|0 P:(DE-HGF)0
|b 84
700 1 _ |a Bignon, Emmanuelle
|0 P:(DE-HGF)0
|b 85
700 1 _ |a Cantone, Elena
|0 P:(DE-HGF)0
|b 86
700 1 _ |a Paola Cecchini, Maria
|0 P:(DE-HGF)0
|b 87
700 1 _ |a Chen, Jingguo
|0 P:(DE-HGF)0
|b 88
700 1 _ |a Dolors Guàrdia, Maria
|0 P:(DE-HGF)0
|b 89
700 1 _ |a Hoover, Kara C
|0 P:(DE-HGF)0
|b 90
700 1 _ |a Karni, Noam
|0 P:(DE-HGF)0
|b 91
700 1 _ |a Navarro, Marta
|0 P:(DE-HGF)0
|b 92
700 1 _ |a Nolden, Alissa A
|0 P:(DE-HGF)0
|b 93
700 1 _ |a Portillo Mazal, Patricia
|0 P:(DE-HGF)0
|b 94
700 1 _ |a Rowan, Nicholas R
|0 P:(DE-HGF)0
|b 95
700 1 _ |a Sarabi-Jamab, Atiye
|0 P:(DE-HGF)0
|b 96
700 1 _ |a Archer, Nicholas S
|0 P:(DE-HGF)0
|b 97
700 1 _ |a Chen, Ben
|0 P:(DE-HGF)0
|b 98
700 1 _ |a Di Valerio, Elizabeth A
|0 P:(DE-HGF)0
|b 99
700 1 _ |a Feeney, Emma L
|0 P:(DE-HGF)0
|b 100
700 1 _ |a Frasnelli, Johannes
|0 P:(DE-HGF)0
|b 101
700 1 _ |a Hannum, Mackenzie E
|0 P:(DE-HGF)0
|b 102
700 1 _ |a Hopkins, Claire
|0 P:(DE-HGF)0
|b 103
700 1 _ |a Klein, Hadar
|0 P:(DE-HGF)0
|b 104
700 1 _ |a Mignot, Coralie
|0 P:(DE-HGF)0
|b 105
700 1 _ |a Mucignat, Carla
|0 P:(DE-HGF)0
|b 106
700 1 _ |a Ning, Yuping
|0 P:(DE-HGF)0
|b 107
700 1 _ |a Ozturk, Elif E
|0 P:(DE-HGF)0
|b 108
700 1 _ |a Peng, Mei
|0 P:(DE-HGF)0
|b 109
700 1 _ |a Saatci, Ozlem
|0 P:(DE-HGF)0
|b 110
700 1 _ |a Sell, Elizabeth A
|0 P:(DE-HGF)0
|b 111
700 1 _ |a Yan, Carol H
|0 P:(DE-HGF)0
|b 112
700 1 _ |a Alfaro, Raul
|0 P:(DE-HGF)0
|b 113
700 1 _ |a Cecchetto, Cinzia
|0 P:(DE-HGF)0
|b 114
700 1 _ |a Coureaud, Gérard
|0 P:(DE-HGF)0
|b 115
700 1 _ |a Herriman, Riley D
|0 P:(DE-HGF)0
|b 116
700 1 _ |a Justice, Jeb M
|0 P:(DE-HGF)0
|b 117
700 1 _ |a Kaushik, Pavan Kumar
|0 P:(DE-HGF)0
|b 118
700 1 _ |a Koyama, Sachiko
|0 P:(DE-HGF)0
|b 119
700 1 _ |a Overdevest, Jonathan B
|0 P:(DE-HGF)0
|b 120
700 1 _ |a Pirastu, Nicola
|0 P:(DE-HGF)0
|b 121
700 1 _ |a Ramirez, Vicente A
|0 P:(DE-HGF)0
|b 122
700 1 _ |a Roberts, S Craig
|0 P:(DE-HGF)0
|b 123
700 1 _ |a Smith, Barry C
|0 P:(DE-HGF)0
|b 124
700 1 _ |a Cao, Hongyuan
|0 P:(DE-HGF)0
|b 125
700 1 _ |a Wang, Hong
|0 P:(DE-Juel1)184889
|b 126
700 1 _ |a Balungwe Birindwa, Patrick
|0 P:(DE-HGF)0
|b 127
700 1 _ |a Baguma, Marius
|0 P:(DE-HGF)0
|b 128
773 _ _ |a 10.1093/chemse/bjaa081
|g Vol. 46, p. bjaa081
|0 PERI:(DE-600)1494617-8
|p bjaa081
|t Chemical senses
|v 46
|y 2021
|x 1464-3553
856 4 _ |u https://juser.fz-juelich.de/record/902048/files/bjaa081.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902048
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-2940-3378
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165362
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 0000-0001-9812-0040
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 0000-0001-8909-7758
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 0000-0003-4079-0396
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 25
|6 0000-0002-2837-9361
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 29
|6 0000-0001-5213-2337
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 33
|6 0000-0002-9073-9946
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 44
|6 0000-0002-0856-0569
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 45
|6 0000-0002-1125-3236
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 51
|6 0000-0002-2991-3036
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 56
|6 0000-0002-1781-8912
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 57
|6 0000-0002-3529-8981
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 62
|6 0000-0002-6353-5411
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 66
|6 0000-0001-9065-6326
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 67
|6 0000-0002-4374-6107
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 68
|6 0000-0001-8275-8795
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 70
|6 0000-0003-0276-7072
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM SENSES : 2019
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21