000902053 001__ 902053
000902053 005__ 20250129094250.0
000902053 0247_ $$2doi$$a10.1016/j.surfin.2021.101486
000902053 0247_ $$2Handle$$a2128/28862
000902053 0247_ $$2WOS$$aWOS:000711758500003
000902053 037__ $$aFZJ-2021-04001
000902053 082__ $$a540
000902053 1001_ $$0P:(DE-HGF)0$$aWojciechowski, Kamil$$b0$$eCorresponding author
000902053 245__ $$aSurface-active extracts from plants rich in saponins – effect on lipid mono- and bilayers
000902053 260__ $$aAmsterdam$$bElsevier$$c2021
000902053 3367_ $$2DRIVER$$aarticle
000902053 3367_ $$2DataCite$$aOutput Types/Journal article
000902053 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635514957_31648
000902053 3367_ $$2BibTeX$$aARTICLE
000902053 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902053 3367_ $$00$$2EndNote$$aJournal Article
000902053 520__ $$aThe aqueous extracts of the seeds of oat (Avena sativa L.), horse chestnut (Aesculus hippocastanum L.), soybean (Glycine max L.), cowherb (Vaccaria hispanica [P. Mill.] Rauschert) and quinoa (Chenopodium quinoa Willd.), and the roots of soapwort (Saponaria officinalis L.) without any preservatives were characterized in terms of theirsurface tension, surface compression (dilational) rheology, foamability and foam stability. The saponin content in the extracts was determined using UPLC-MS and their interaction with model lipid monolayers consisting of dipalmitoylphosphatidylcholine (DPPC)/cholesterol and Ceramide AP/stearic acid/cholesterol were analyzed by surface pressure relaxation, surface compression elasticity and neutron reflectometry (NR). The lipid composition was chosen to mimic the cell membrane of keratinocytes – major constituents of the human deeper skin layers, and the intercellular lipids (“mortar”) in the “bricks and mortar” model of the outermost layer of the epidermis (stratum corneum). Bilayers of DPPC/cholesterol were additionally characterized using dynamic light scattering (DLS) and NR. The oat and soybean extracts were shown to be much less abundant in saponins as compared to cowherb, horse chestnut, soapwort or quinoa, and showed limited foaming abilities. They did not affect significantly the model lipid mono- and bilayers mimicking the skin outer layers, either. The horse chestnut extract affected both model membranes to the highest extent, yet without solubilizing the lipids.
000902053 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000902053 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000902053 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902053 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000902053 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000902053 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000902053 7001_ $$0P:(DE-HGF)0$$aJurek, Ilona$$b1
000902053 7001_ $$0P:(DE-HGF)0$$aGóral, Ilona$$b2
000902053 7001_ $$0P:(DE-HGF)0$$aCampana, Mario$$b3
000902053 7001_ $$00000-0002-7932-5574$$aGeue, Thomas$$b4
000902053 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, Thomas$$b5$$ufzj
000902053 773__ $$0PERI:(DE-600)2874399-4$$a10.1016/j.surfin.2021.101486$$gVol. 27, p. 101486 -$$p101486 -$$tSurfaces and Interfaces$$v27$$x2468-0230$$y2021
000902053 8564_ $$uhttps://juser.fz-juelich.de/record/902053/files/1-s2.0-S2468023021005630-main.pdf$$yOpenAccess
000902053 909CO $$ooai:juser.fz-juelich.de:902053$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b5$$kFZJ
000902053 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000902053 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000902053 9141_ $$y2021
000902053 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902053 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902053 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF INTERFACES : 2019$$d2021-01-27
000902053 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902053 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902053 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902053 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902053 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000902053 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902053 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902053 920__ $$lyes
000902053 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000902053 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000902053 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000902053 9801_ $$aFullTexts
000902053 980__ $$ajournal
000902053 980__ $$aVDB
000902053 980__ $$aUNRESTRICTED
000902053 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000902053 980__ $$aI:(DE-Juel1)PGI-4-20110106
000902053 980__ $$aI:(DE-82)080009_20140620
000902053 981__ $$aI:(DE-Juel1)JCNS-2-20110106