001     902053
005     20250129094250.0
024 7 _ |a 10.1016/j.surfin.2021.101486
|2 doi
024 7 _ |a 2128/28862
|2 Handle
024 7 _ |a WOS:000711758500003
|2 WOS
037 _ _ |a FZJ-2021-04001
082 _ _ |a 540
100 1 _ |a Wojciechowski, Kamil
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Surface-active extracts from plants rich in saponins – effect on lipid mono- and bilayers
260 _ _ |a Amsterdam
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635514957_31648
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aqueous extracts of the seeds of oat (Avena sativa L.), horse chestnut (Aesculus hippocastanum L.), soybean (Glycine max L.), cowherb (Vaccaria hispanica [P. Mill.] Rauschert) and quinoa (Chenopodium quinoa Willd.), and the roots of soapwort (Saponaria officinalis L.) without any preservatives were characterized in terms of theirsurface tension, surface compression (dilational) rheology, foamability and foam stability. The saponin content in the extracts was determined using UPLC-MS and their interaction with model lipid monolayers consisting of dipalmitoylphosphatidylcholine (DPPC)/cholesterol and Ceramide AP/stearic acid/cholesterol were analyzed by surface pressure relaxation, surface compression elasticity and neutron reflectometry (NR). The lipid composition was chosen to mimic the cell membrane of keratinocytes – major constituents of the human deeper skin layers, and the intercellular lipids (“mortar”) in the “bricks and mortar” model of the outermost layer of the epidermis (stratum corneum). Bilayers of DPPC/cholesterol were additionally characterized using dynamic light scattering (DLS) and NR. The oat and soybean extracts were shown to be much less abundant in saponins as compared to cowherb, horse chestnut, soapwort or quinoa, and showed limited foaming abilities. They did not affect significantly the model lipid mono- and bilayers mimicking the skin outer layers, either. The horse chestnut extract affected both model membranes to the highest extent, yet without solubilizing the lipids.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Jurek, Ilona
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Góral, Ilona
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Campana, Mario
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Geue, Thomas
|0 0000-0002-7932-5574
|b 4
700 1 _ |a Gutberlet, Thomas
|0 P:(DE-Juel1)168124
|b 5
|u fzj
773 _ _ |a 10.1016/j.surfin.2021.101486
|g Vol. 27, p. 101486 -
|0 PERI:(DE-600)2874399-4
|p 101486 -
|t Surfaces and Interfaces
|v 27
|y 2021
|x 2468-0230
856 4 _ |u https://juser.fz-juelich.de/record/902053/files/1-s2.0-S2468023021005630-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902053
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)168124
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF INTERFACES : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21