001     902074
005     20211130111059.0
024 7 _ |a 10.1007/s00259-021-05391-3
|2 doi
024 7 _ |a 0340-6997
|2 ISSN
024 7 _ |a 1432-105X
|2 ISSN
024 7 _ |a 1619-7070
|2 ISSN
024 7 _ |a 1619-7089
|2 ISSN
024 7 _ |a 2128/28850
|2 Handle
024 7 _ |a altmetric:106259052
|2 altmetric
024 7 _ |a pmid:34021393
|2 pmid
024 7 _ |a WOS:000652954500002
|2 WOS
037 _ _ |a FZJ-2021-04014
082 _ _ |a 610
100 1 _ |a Song, Mengmeng
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Feasibility of short imaging protocols for [18F]PI-2620 tau-PET in progressive supranuclear palsy
260 _ _ |a Heidelberg [u.a.]
|c 2021
|b Springer-Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635321615_25446
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeDynamic 60-min positron emission tomography (PET) imaging with the novel tau radiotracer [18F]PI-2620 facilitated accurate discrimination between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs). This study investigated if truncated acquisition and static time windows can be used for [18F]PI-2620 tau-PET imaging of PSP.MethodsThirty-seven patients with PSP Richardson syndrome (PSP-RS) were evaluated together with ten HCs. [18F]PI-2620 PET was performed by a dynamic 60-min scan. Distribution volume ratios (DVRs) were calculated using full and truncated scan durations (0–60, 0–50, 0–40, 0–30, and 0–20 min p.i.). Standardized uptake value ratios (SUVrs) were obtained 20–40, 30–50, and 40–60 min p.i.. All DVR and SUVr data were compared with regard to their potential to discriminate patients with PSP-RS from HCs in predefined subcortical and cortical target regions (effect size, area under the curve (AUC), multi-region classifier).Results0–50 and 0–40 DVR showed equivalent effect sizes as 0–60 DVR (averaged Cohen’s d: 1.22 and 1.16 vs. 1.26), whereas the performance dropped for 0–30 or 0–20 DVR. The 20–40 SUVr indicated the best performance of all static acquisition windows (averaged Cohen’s d: 0.99). The globus pallidus internus discriminated patients with PSP-RS and HCs at a similarly high level for 0–60 DVR (AUC: 0.96), 0–40 DVR (AUC: 0.96), and 20–40 SUVr (AUC: 0.94). The multi-region classifier sensitivity of these time windows was consistently 86%.ConclusionTruncated and static imaging windows can be used for [18F]PI-2620 PET imaging of PSP. 0–40 min dynamic scanning offers the best balance between accuracy and economic scanning.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Scheifele, Maximilian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Barthel, Henryk
|0 P:(DE-HGF)0
|b 2
700 1 _ |a van Eimeren, Thilo
|0 P:(DE-Juel1)169110
|b 3
700 1 _ |a Beyer, Leonie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Marek, Ken
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Eckenweber, Florian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Palleis, Carla
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kaiser, Lena
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Finze, Anika
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kern, Maike
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Nitschmann, Alexander
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Biechele, Gloria
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Katzdobler, Sabrina
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Bischof, Gèrard
|0 P:(DE-Juel1)166265
|b 14
|u fzj
700 1 _ |a Hammes, Jochen
|0 P:(DE-Juel1)184744
|b 15
|u fzj
700 1 _ |a Jessen, Frank
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Saur, Dorothee
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Schroeter, Matthias L.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Rumpf, Jost-Julian
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Rullmann, Michael
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Schildan, Andreas
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Patt, Marianne
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 23
|u fzj
700 1 _ |a Stephens, Andrew W.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Rauchmann, Boris-Stephan
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Perneczky, Robert
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Levin, Johannes
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Classen, Joseph
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Höglinger, Günter U.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Bartenstein, Peter
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Boening, Guido
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Ziegler, Sibylle
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Villemagne, Victor
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 34
|u fzj
700 1 _ |a Seibyl, John
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Sabri, Osama
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Brendel, Matthias
|0 0000-0002-9247-2843
|b 37
|e Corresponding author
773 _ _ |a 10.1007/s00259-021-05391-3
|g Vol. 48, no. 12, p. 3872 - 3885
|0 PERI:(DE-600)2098375-X
|n 12
|p 3872 - 3885
|t European journal of nuclear medicine and molecular imaging
|v 48
|y 2021
|x 1619-7089
856 4 _ |u https://juser.fz-juelich.de/record/902074/files/Song_2021_EurJNuclMedMolImaging_Feasibility%20of%20short%20imaging%20protocols....pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902074
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)166265
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)184744
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 34
|6 P:(DE-Juel1)177611
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J NUCL MED MOL I : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J NUCL MED MOL I : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21