000902086 001__ 902086
000902086 005__ 20220126143614.0
000902086 0247_ $$2doi$$a10.1007/s10836-021-05968-8
000902086 0247_ $$2ISSN$$a0923-8174
000902086 0247_ $$2ISSN$$a1573-0727
000902086 0247_ $$2Handle$$a2128/28852
000902086 0247_ $$2WOS$$aWOS:000709238700001
000902086 037__ $$aFZJ-2021-04026
000902086 082__ $$a670
000902086 1001_ $$0P:(DE-HGF)0$$aPoehls, L. M. Bolzani$$b0$$eCorresponding author
000902086 245__ $$aReview of Manufacturing Process Defects and Their Effects on Memristive Devices
000902086 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2021
000902086 3367_ $$2DRIVER$$aarticle
000902086 3367_ $$2DataCite$$aOutput Types/Journal article
000902086 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643201752_9153
000902086 3367_ $$2BibTeX$$aARTICLE
000902086 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902086 3367_ $$00$$2EndNote$$aJournal Article
000902086 520__ $$aComplementary Metal Oxide Semiconductor (CMOS) technology has been scaled down over the last forty years making possible the design of high-performance applications, following the predictions made by Gordon Moore and Robert H. Dennard in the 1970s. However, there is a growing concern that device scaling, while maintaining cost-effective production, will become infeasible below a certain feature size. In parallel, emerging applications including Internet-of-Things (IoT) and big data applications present high demands in terms of storage and computing capability, combined with challenging constraints in terms of size, power consumption and response latency. In this scenario, memristive devices have become promising candidates to complement the CMOS technology due to their CMOS manufacturing process compatibility, great scalability and high density, zero standby power consumption and their capacity to implement high density memories as well as new computing paradigms. Despite these advantages, memristive devices are also susceptible to manufacturing defects that may cause unique faulty behaviors that are not seen in CMOS, increasing significantly the complexity of test procedures. This paper provides a review about the manufacturing process of memristives devices, focusing on Valence Change Mechanism (VCM)-based memristive devices, and a comparative analysis of the CMOS and memristive device manufacturing processes. Moreover, this paper identifies possible manufacturing failure mechanisms that may affect these novel devices, completing the list of the already known mechanisms, and provides a discussion about possible faulty behaviors. Note that the identification of these mechanisms provides insights regarding the possible memristive devices’ defective behaviors, enabling to derive more accurate fault models and consequently, more suitable test procedures.
000902086 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000902086 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000902086 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902086 7001_ $$0P:(DE-HGF)0$$aFieback, M. C. R.$$b1
000902086 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, S.$$b2
000902086 7001_ $$0P:(DE-HGF)0$$aCopetti, T.$$b3
000902086 7001_ $$0P:(DE-HGF)0$$aBrum, E.$$b4
000902086 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b5
000902086 7001_ $$0P:(DE-HGF)0$$aHamdioui, S.$$b6
000902086 7001_ $$0P:(DE-HGF)0$$aGemmeke, T.$$b7
000902086 773__ $$0PERI:(DE-600)1479776-8$$a10.1007/s10836-021-05968-8$$p1$$tJournal of electronic testing$$v47$$x1573-0727$$y2021
000902086 8564_ $$uhttps://juser.fz-juelich.de/record/902086/files/Poehls2021_Article_ReviewOfManufacturingProcessDe.pdf$$yOpenAccess
000902086 909CO $$ooai:juser.fz-juelich.de:902086$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000902086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b2$$kFZJ
000902086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b5$$kFZJ
000902086 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000902086 9141_ $$y2021
000902086 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-27
000902086 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902086 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTRON TEST : 2019$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-27$$wger
000902086 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902086 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902086 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000902086 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902086 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000902086 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000902086 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000902086 980__ $$ajournal
000902086 980__ $$aVDB
000902086 980__ $$aI:(DE-Juel1)PGI-7-20110106
000902086 980__ $$aI:(DE-82)080009_20140620
000902086 980__ $$aI:(DE-Juel1)PGI-10-20170113
000902086 980__ $$aUNRESTRICTED
000902086 9801_ $$aFullTexts