001     902093
005     20220930130329.0
024 7 _ |a 10.1109/JSTARS.2021.3115604
|2 doi
024 7 _ |a 1939-1404
|2 ISSN
024 7 _ |a 2151-1535
|2 ISSN
024 7 _ |a 2128/28855
|2 Handle
024 7 _ |a WOS:000707442300013
|2 WOS
037 _ _ |a FZJ-2021-04028
082 _ _ |a 520
100 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 0
245 _ _ |a A High-Performance Multispectral Adaptation GAN for Harmonizing Dense Time Series of Landsat-8 and Sentinel-2 Images
260 _ _ |a New York, NY
|c 2021
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635428684_19920
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The combination of data acquired by Landsat-8 and Sentinel-2 earth observation missions produces dense time series (TSs) of multispectral images that are essential for monitoring the dynamics of land-cover and land-use classes across the earth's surface with high temporal resolution. However, the optical sensors of the two missions have different spectral and spatial properties, thus they require a harmonization processing step before they can be exploited in remote sensing applications. In this work, we propose a workflow-based on a deep learning approach to harmonize these two products developed and deployed on an high-performance computing environment. In particular, we use a multispectral generative adversarial network with a U-Net generator and a PatchGan discriminator to integrate existing Landsat-8 TSs with data sensed by the Sentinel-2 mission. We show a qualitative and quantitative comparison with an existing physical method [National Aeronautics and Space Administration (NASA) Harmonized Landsat and Sentinel (HLS)] and analyze original and generated data in different experimental setups with the support of spectral distortion metrics. To demonstrate the effectiveness of the proposed approach, a crop type mapping task is addressed using the harmonized dense TS of images, which achieved an overall accuracy of 87.83% compared to 81.66% of the state-of-the-art method.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a AISee - AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 2
536 _ _ |a ADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748)
|0 G:(EU-Grant)956748
|c 956748
|f H2020-JTI-EuroHPC-2019-1
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Paris, Claudia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 2
|e Corresponding author
700 1 _ |a Bruzzone, Lorenzo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
773 _ _ |a 10.1109/JSTARS.2021.3115604
|g Vol. 14, p. 10134 - 10146
|0 PERI:(DE-600)2457423-5
|p 10134 - 10146
|t IEEE journal of selected topics in applied earth observations and remote sensing
|v 14
|y 2021
|x 2151-1535
856 4 _ |u https://juser.fz-juelich.de/record/902093/files/Invoice_APC600261810_.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902093/files/A_High-Performance_Multispectral_Adaptation_GAN_for_Harmonizing_Dense_Time_Series_of_Landsat-8_and_Sentinel-2_Images.pdf
909 C O |o oai:juser.fz-juelich.de:902093
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J-STARS : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21