Home > Publications database > A High-Performance Multispectral Adaptation GAN for Harmonizing Dense Time Series of Landsat-8 and Sentinel-2 Images > print |
001 | 902093 | ||
005 | 20220930130329.0 | ||
024 | 7 | _ | |a 10.1109/JSTARS.2021.3115604 |2 doi |
024 | 7 | _ | |a 1939-1404 |2 ISSN |
024 | 7 | _ | |a 2151-1535 |2 ISSN |
024 | 7 | _ | |a 2128/28855 |2 Handle |
024 | 7 | _ | |a WOS:000707442300013 |2 WOS |
037 | _ | _ | |a FZJ-2021-04028 |
082 | _ | _ | |a 520 |
100 | 1 | _ | |a Sedona, Rocco |0 P:(DE-Juel1)178695 |b 0 |
245 | _ | _ | |a A High-Performance Multispectral Adaptation GAN for Harmonizing Dense Time Series of Landsat-8 and Sentinel-2 Images |
260 | _ | _ | |a New York, NY |c 2021 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1635428684_19920 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The combination of data acquired by Landsat-8 and Sentinel-2 earth observation missions produces dense time series (TSs) of multispectral images that are essential for monitoring the dynamics of land-cover and land-use classes across the earth's surface with high temporal resolution. However, the optical sensors of the two missions have different spectral and spatial properties, thus they require a harmonization processing step before they can be exploited in remote sensing applications. In this work, we propose a workflow-based on a deep learning approach to harmonize these two products developed and deployed on an high-performance computing environment. In particular, we use a multispectral generative adversarial network with a U-Net generator and a PatchGan discriminator to integrate existing Landsat-8 TSs with data sensed by the Sentinel-2 mission. We show a qualitative and quantitative comparison with an existing physical method [National Aeronautics and Space Administration (NASA) Harmonized Landsat and Sentinel (HLS)] and analyze original and generated data in different experimental setups with the support of spectral distortion metrics. To demonstrate the effectiveness of the proposed approach, a crop type mapping task is addressed using the harmonized dense TS of images, which achieved an overall accuracy of 87.83% compared to 81.66% of the state-of-the-art method. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a AISee - AI- and Simulation-Based Engineering at Exascale (951733) |0 G:(EU-Grant)951733 |c 951733 |f H2020-INFRAEDI-2019-1 |x 1 |
536 | _ | _ | |a DEEP-EST - DEEP - Extreme Scale Technologies (754304) |0 G:(EU-Grant)754304 |c 754304 |f H2020-FETHPC-2016 |x 2 |
536 | _ | _ | |a ADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748) |0 G:(EU-Grant)956748 |c 956748 |f H2020-JTI-EuroHPC-2019-1 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Paris, Claudia |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 2 |e Corresponding author |
700 | 1 | _ | |a Bruzzone, Lorenzo |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 4 |
773 | _ | _ | |a 10.1109/JSTARS.2021.3115604 |g Vol. 14, p. 10134 - 10146 |0 PERI:(DE-600)2457423-5 |p 10134 - 10146 |t IEEE journal of selected topics in applied earth observations and remote sensing |v 14 |y 2021 |x 2151-1535 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902093/files/Invoice_APC600261810_.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/902093/files/A_High-Performance_Multispectral_Adaptation_GAN_for_Harmonizing_Dense_Time_Series_of_Landsat-8_and_Sentinel-2_Images.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:902093 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171343 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132239 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE J-STARS : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|