000902099 001__ 902099
000902099 005__ 20240711085630.0
000902099 0247_ $$2doi$$a10.1007/s11581-021-04300-w
000902099 0247_ $$2ISSN$$a0947-7047
000902099 0247_ $$2ISSN$$a1862-0760
000902099 0247_ $$2Handle$$a2128/30254
000902099 0247_ $$2altmetric$$aaltmetric:115482483
000902099 0247_ $$2WOS$$aWOS:000705733500001
000902099 037__ $$aFZJ-2021-04032
000902099 041__ $$aEnglish
000902099 082__ $$a530
000902099 1001_ $$0P:(DE-Juel1)179291$$aMann, Markus$$b0$$ufzj
000902099 245__ $$aThe influence of hafnium impurities on the electrochemical performance of tantalum substituted Li7La3Zr2O12 solid electrolytes
000902099 260__ $$aHeidelberg$$bSpringer$$c2021
000902099 3367_ $$2DRIVER$$aarticle
000902099 3367_ $$2DataCite$$aOutput Types/Journal article
000902099 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642156679_4885
000902099 3367_ $$2BibTeX$$aARTICLE
000902099 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902099 3367_ $$00$$2EndNote$$aJournal Article
000902099 520__ $$aGarnet-based Li7La3Zr2O12 (LLZO) is considered one of the most promising oxide-ceramic solid electrolyte materials for inorganic all-solid-state batteries. Dopants and substituents like Al, Ta, Nb, Ga, and W were shown to have a high impact on the total ionic conductivity, increasing it from  10−6 S/cm up to  10−3 S/cm. However, natural zirconium sources always contain a small amount of hafnium which could also act as dopant, but the separation of these two elements is complicated and expensive. In this work, we investigate the influence of various Hf-impurity concentrations on the performance of tan-talum-doped LLZO. We synthesised  Li6.45Al0.05La3Zr1.6−xHfxTa0.4O12 (LLZHO with x = 0 – 1.6) via conventional solid-state synthesis and have demonstrated that up to x = 0.1, hafnium impurities do not have a significant impact on the performance of the material. Above this concentration, the Li-ion conductivity is steadily reduced to around 70% when zirconium is fully substituted by hafnium resulting in  Li6.45Al0.05La3Hf1.6Ta0.4O12. As the purity of Zr precursors has a great impact on their price, these findings can help to reduce the price of LLZO in general, as lower grade zirconium can be used in industrial scale applications.
000902099 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000902099 536__ $$0G:(BMBF)03XP0115B$$aLISZUBA - Lithium-Schwefel-Feststoffbatterien als Zukunftsbatterie (03XP0115B)$$c03XP0115B$$x1
000902099 536__ $$0G:(BMBF)13XP0173A$$aFestBatt-Oxide - Materialplattform 'Oxide' im Rahmen des Kompetenzclusters für Festkörperbatterien (13XP0173A)$$c13XP0173A$$x2
000902099 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902099 7001_ $$0P:(DE-Juel1)177898$$aKüpers, Michael$$b1$$ufzj
000902099 7001_ $$0P:(DE-Juel1)169991$$aHäuschen, Grit$$b2$$ufzj
000902099 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3$$eCorresponding author$$ufzj
000902099 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b4$$ufzj
000902099 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000902099 773__ $$0PERI:(DE-600)2226746-3$$a10.1007/s11581-021-04300-w$$gVol. 28, no. 1, p. 53 - 62$$n1$$p53 - 62$$tIonics$$v28$$x1862-0760$$y2021
000902099 8564_ $$uhttps://juser.fz-juelich.de/record/902099/files/Mann2021_Article_TheInfluenceOfHafniumImpuritie.pdf$$yOpenAccess
000902099 8564_ $$uhttps://juser.fz-juelich.de/record/902099/files/Supporting%20Information.docx$$yRestricted
000902099 8767_ $$d2021-10-07$$eHybrid-OA$$jDEAL
000902099 909CO $$ooai:juser.fz-juelich.de:902099$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000902099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179291$$aForschungszentrum Jülich$$b0$$kFZJ
000902099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177898$$aForschungszentrum Jülich$$b1$$kFZJ
000902099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169991$$aForschungszentrum Jülich$$b2$$kFZJ
000902099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b3$$kFZJ
000902099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b4$$kFZJ
000902099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000902099 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000902099 9141_ $$y2021
000902099 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000902099 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000902099 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902099 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIONICS : 2019$$d2021-01-28
000902099 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000902099 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-28$$wger
000902099 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000902099 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000902099 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902099 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000902099 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000902099 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000902099 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000902099 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000902099 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000902099 920__ $$lyes
000902099 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000902099 9801_ $$aFullTexts
000902099 980__ $$ajournal
000902099 980__ $$aVDB
000902099 980__ $$aUNRESTRICTED
000902099 980__ $$aI:(DE-Juel1)IEK-1-20101013
000902099 980__ $$aAPC
000902099 981__ $$aI:(DE-Juel1)IMD-2-20101013