000902103 001__ 902103
000902103 005__ 20240507205536.0
000902103 0247_ $$2doi$$a10.1103/PhysRevResearch.3.043077
000902103 0247_ $$2Handle$$a2128/28918
000902103 0247_ $$2altmetric$$aaltmetric:115949757
000902103 0247_ $$2WOS$$aWOS:000713153600008
000902103 037__ $$aFZJ-2021-04034
000902103 082__ $$a530
000902103 1001_ $$0P:(DE-Juel1)173607$$avan Meegen, Alexander$$b0$$eCorresponding author
000902103 245__ $$aMicroscopic theory of intrinsic timescales in spiking neural networks
000902103 260__ $$aCollege Park, MD$$bAPS$$c2021
000902103 3367_ $$2DRIVER$$aarticle
000902103 3367_ $$2DataCite$$aOutput Types/Journal article
000902103 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715083525_30445
000902103 3367_ $$2BibTeX$$aARTICLE
000902103 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902103 3367_ $$00$$2EndNote$$aJournal Article
000902103 520__ $$aA complex interplay of single-neuron properties and the recurrent network structure shapes the activity of cortical neurons. The single-neuron activity statistics differ in general from the respective population statistics, including spectra and, correspondingly, autocorrelation times. We develop a theory for self-consistent second-order single-neuron statistics in block-structured sparse random networks of spiking neurons. In particular, the theory predicts the neuron-level autocorrelation times, also known as intrinsic timescales, of the neuronal activity. The theory is based on an extension of dynamic mean-field theory from rate networks to spiking networks, which is validated via simulations. It accounts for both static variability, e.g., due to a distributed number of incoming synapses per neuron, and temporal fluctuations of the input. We apply the theory to balanced random networks of generalized linear model neurons, balanced random networks of leaky integrate-and-fire neurons, and a biologically constrained network of leaky integrate-and-fire neurons. For the generalized linear model network with an error function nonlinearity, a novel analytical solution of the colored noise problem allows us to obtain self-consistent firing rate distributions, single-neuron power spectra, and intrinsic timescales. For the leaky integrate-and-fire networks, we derive an approximate analytical solution of the colored noise problem, based on the Stratonovich approximation of the Wiener-Rice series and a novel analytical solution for the free upcrossing statistics. Again closing the system self-consistently, in the fluctuation-driven regime, this approximation yields reliable estimates of the mean firing rate and its variance across neurons, the interspike-interval distribution, the single-neuron power spectra, and intrinsic timescales. With the help of our theory, we find parameter regimes where the intrinsic timescale significantly exceeds the membrane time constant, which indicates the influence of the recurrent dynamics. Although the resulting intrinsic timescales are on the same order for generalized linear model neurons and leaky integrate-and-fire neurons, the two systems differ fundamentally: for the former, the longer intrinsic timescale arises from an increased firing probability after a spike; for the latter, it is a consequence of a prolonged effective refractory period with a decreased firing probability. Furthermore, the intrinsic timescale attains a maximum at a critical synaptic strength for generalized linear model networks, in contrast to the minimum found for leaky integrate-and-fire networks.
000902103 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000902103 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000902103 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000902103 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000902103 536__ $$0G:(GEPRIS)347572269$$aDFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)$$c347572269$$x4
000902103 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x5
000902103 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902103 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha J.$$b1
000902103 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.3.043077$$gVol. 3, no. 4, p. 043077$$n4$$p043077$$tPhysical review research$$v3$$x2643-1564$$y2021
000902103 8564_ $$uhttps://juser.fz-juelich.de/record/902103/files/INV_21_OCT_006903.pdf
000902103 8564_ $$uhttps://juser.fz-juelich.de/record/902103/files/PhysRevResearch.3.043077.pdf$$yOpenAccess
000902103 8767_ $$8INV/21/OCT/006903$$92021-10-11$$d2021-10-18$$eAPC$$jZahlung erfolgt$$zUSD 2500.00 Belegnr.: 1200172126
000902103 909CO $$ooai:juser.fz-juelich.de:902103$$popen_access$$popenaire$$popenCost$$pec_fundedresources$$pdnbdelivery$$pVDB$$pdriver$$pOpenAPC
000902103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173607$$aForschungszentrum Jülich$$b0$$kFZJ
000902103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b1$$kFZJ
000902103 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000902103 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000902103 9141_ $$y2021
000902103 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902103 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000902103 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902103 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
000902103 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000902103 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000902103 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
000902103 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
000902103 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
000902103 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-16T10:08:58Z
000902103 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000902103 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000902103 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000902103 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000902103 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000902103 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000902103 920__ $$lno
000902103 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000902103 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
000902103 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000902103 980__ $$ajournal
000902103 980__ $$aVDB
000902103 980__ $$aI:(DE-Juel1)INM-6-20090406
000902103 980__ $$aI:(DE-Juel1)IAS-6-20130828
000902103 980__ $$aI:(DE-Juel1)INM-10-20170113
000902103 980__ $$aAPC
000902103 980__ $$aUNRESTRICTED
000902103 9801_ $$aAPC
000902103 9801_ $$aFullTexts
000902103 981__ $$aI:(DE-Juel1)IAS-6-20130828