001     902103
005     20240507205536.0
024 7 _ |a 10.1103/PhysRevResearch.3.043077
|2 doi
024 7 _ |a 2128/28918
|2 Handle
024 7 _ |a altmetric:115949757
|2 altmetric
024 7 _ |a WOS:000713153600008
|2 WOS
037 _ _ |a FZJ-2021-04034
082 _ _ |a 530
100 1 _ |a van Meegen, Alexander
|0 P:(DE-Juel1)173607
|b 0
|e Corresponding author
245 _ _ |a Microscopic theory of intrinsic timescales in spiking neural networks
260 _ _ |a College Park, MD
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715083525_30445
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A complex interplay of single-neuron properties and the recurrent network structure shapes the activity of cortical neurons. The single-neuron activity statistics differ in general from the respective population statistics, including spectra and, correspondingly, autocorrelation times. We develop a theory for self-consistent second-order single-neuron statistics in block-structured sparse random networks of spiking neurons. In particular, the theory predicts the neuron-level autocorrelation times, also known as intrinsic timescales, of the neuronal activity. The theory is based on an extension of dynamic mean-field theory from rate networks to spiking networks, which is validated via simulations. It accounts for both static variability, e.g., due to a distributed number of incoming synapses per neuron, and temporal fluctuations of the input. We apply the theory to balanced random networks of generalized linear model neurons, balanced random networks of leaky integrate-and-fire neurons, and a biologically constrained network of leaky integrate-and-fire neurons. For the generalized linear model network with an error function nonlinearity, a novel analytical solution of the colored noise problem allows us to obtain self-consistent firing rate distributions, single-neuron power spectra, and intrinsic timescales. For the leaky integrate-and-fire networks, we derive an approximate analytical solution of the colored noise problem, based on the Stratonovich approximation of the Wiener-Rice series and a novel analytical solution for the free upcrossing statistics. Again closing the system self-consistently, in the fluctuation-driven regime, this approximation yields reliable estimates of the mean firing rate and its variance across neurons, the interspike-interval distribution, the single-neuron power spectra, and intrinsic timescales. With the help of our theory, we find parameter regimes where the intrinsic timescale significantly exceeds the membrane time constant, which indicates the influence of the recurrent dynamics. Although the resulting intrinsic timescales are on the same order for generalized linear model neurons and leaky integrate-and-fire neurons, the two systems differ fundamentally: for the former, the longer intrinsic timescale arises from an increased firing probability after a spike; for the latter, it is a consequence of a prolonged effective refractory period with a decreased firing probability. Furthermore, the intrinsic timescale attains a maximum at a critical synaptic strength for generalized linear model networks, in contrast to the minimum found for leaky integrate-and-fire networks.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 3
536 _ _ |a DFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)
|0 G:(GEPRIS)347572269
|c 347572269
|x 4
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 5
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a van Albada, Sacha J.
|0 P:(DE-Juel1)138512
|b 1
773 _ _ |a 10.1103/PhysRevResearch.3.043077
|g Vol. 3, no. 4, p. 043077
|0 PERI:(DE-600)3004165-X
|n 4
|p 043077
|t Physical review research
|v 3
|y 2021
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/902103/files/INV_21_OCT_006903.pdf
856 4 _ |u https://juser.fz-juelich.de/record/902103/files/PhysRevResearch.3.043077.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902103
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173607
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV RES : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21