000902122 001__ 902122
000902122 005__ 20211130111103.0
000902122 0247_ $$2doi$$a10.3389/fmicb.2021.750150
000902122 0247_ $$2Handle$$a2128/29030
000902122 0247_ $$2pmid$$a34777299
000902122 0247_ $$2WOS$$aWOS:000717705900001
000902122 037__ $$aFZJ-2021-04052
000902122 082__ $$a570
000902122 1001_ $$0P:(DE-Juel1)176296$$aBakkes, Patrick J.$$b0$$eCorresponding author
000902122 245__ $$aBiosensor-Based Optimization of Cutinase Secretion by Corynebacterium glutamicum
000902122 260__ $$aLausanne$$bFrontiers Media$$c2021
000902122 3367_ $$2DRIVER$$aarticle
000902122 3367_ $$2DataCite$$aOutput Types/Journal article
000902122 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637064907_18280
000902122 3367_ $$2BibTeX$$aARTICLE
000902122 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902122 3367_ $$00$$2EndNote$$aJournal Article
000902122 520__ $$aThe industrial microbe Corynebacterium glutamicum is gaining substantial importance as a platform host for recombinant protein secretion. We recently developed a fluorescence-based (eYFP) C. glutamicum reporter strain for the quantification of Sec-dependent protein secretion by monitoring the secretion-related stress response and now demonstrate its applicability in optimizing the secretion of the heterologous enzyme cutinase from Fusarium solani pisi. To drive secretion, either the poor-performing PelSP or the potent NprESP Sec signal peptide from Bacillus subtilis was used. To enable easy detection and quantification of the secreted cutinase we implemented the split green fluorescent protein (GFP) assay, which relies on the GFP11-tag fused to the C-terminus of the cutinase, which can complement a truncated GFP thereby reconstituting its fluorescence. The reporter strain was transformed with different mutant libraries created by error-prone PCR, which covered the region of the signal peptide and the N-terminus of the cutinase. Fluorescence-activated cell sorting (FACS) was performed to isolate cells that show increased fluorescence in response to increased protein secretion stress. Five PelSP variants were identified that showed a 4- to 6-fold increase in the amount and activity of the secreted cutinase (up to 4,100 U/L), whereas two improved NprESP variants were identified that showed a ∼35% increase in secretion, achieving ∼5,500 U/L. Most of the isolated variants carried mutations in the h-region of the signal peptide that increased its overall hydrophobicity. Using site-directed mutagenesis it was shown that the combined mutations F11I and P16S within the hydrophobic core of the PelSP are sufficient to boost cutinase secretion in batch cultivations to the same level as achieved by the NprESP. Screening of a PelSP mutant library in addition resulted in the identification of a cutinase variant with an increased specific activity, which was attributed to the mutation A85V located within the substrate-binding region. Taken together the biosensor-based optimization approach resulted in a substantial improvement of cutinase secretion by C. glutamicum, and therefore represents a valuable tool that can be applied to any secretory protein of interest.
000902122 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902122 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902122 7001_ $$0P:(DE-Juel1)171683$$aLenz, Patrick$$b1
000902122 7001_ $$0P:(DE-Juel1)177776$$aMüller, Carolin$$b2
000902122 7001_ $$0P:(DE-Juel1)128939$$aBida, Astrid$$b3
000902122 7001_ $$0P:(DE-Juel1)138535$$aDohmen-Olma, Doris$$b4
000902122 7001_ $$0P:(DE-Juel1)131469$$aKnapp, Andreas$$b5
000902122 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b6
000902122 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b7
000902122 7001_ $$0P:(DE-Juel1)128960$$aFreudl, Roland$$b8$$eCorresponding author
000902122 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2021.750150$$gVol. 12, p. 750150$$p750150$$tFrontiers in microbiology$$v12$$x1664-302X$$y2021
000902122 8564_ $$uhttps://juser.fz-juelich.de/record/902122/files/fmicb-12-750150.pdf$$yOpenAccess
000902122 909CO $$ooai:juser.fz-juelich.de:902122$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176296$$aForschungszentrum Jülich$$b0$$kFZJ
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171683$$aForschungszentrum Jülich$$b1$$kFZJ
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177776$$aForschungszentrum Jülich$$b2$$kFZJ
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128939$$aForschungszentrum Jülich$$b3$$kFZJ
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138535$$aForschungszentrum Jülich$$b4$$kFZJ
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131469$$aForschungszentrum Jülich$$b5$$kFZJ
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b6$$kFZJ
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b7$$kFZJ
000902122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128960$$aForschungszentrum Jülich$$b8$$kFZJ
000902122 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902122 9141_ $$y2021
000902122 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000902122 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902122 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2019$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902122 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000902122 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902122 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000902122 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
000902122 980__ $$ajournal
000902122 980__ $$aVDB
000902122 980__ $$aUNRESTRICTED
000902122 980__ $$aI:(DE-Juel1)IBG-1-20101118
000902122 980__ $$aI:(DE-Juel1)IMET-20090612
000902122 9801_ $$aFullTexts