001     902125
005     20220930130329.0
024 7 _ |a 10.1039/D1SM01191J
|2 doi
024 7 _ |a 1744-683X
|2 ISSN
024 7 _ |a 1744-6848
|2 ISSN
024 7 _ |a 2128/30047
|2 Handle
024 7 _ |a altmetric:114215064
|2 altmetric
024 7 _ |a pmid:34642726
|2 pmid
024 7 _ |a WOS:000706650500001
|2 WOS
037 _ _ |a FZJ-2021-04055
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Rivera-Morán, J. Alejandro
|0 P:(DE-Juel1)178787
|b 0
245 _ _ |a The effect of morphology and particle–wall interaction on colloidal near-wall dynamics
260 _ _ |a London
|c 2021
|b Royal Soc. of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641837629_25112
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigated the near-wall Brownian dynamics of different types of colloidal particles with a typical size in the 100 nm range using evanescent wave dynamic light scattering (EWDLS). In detail we studied dilute suspensions of silica spheres and shells with a smooth surface and silica particles with controlled surface roughness. While the near wall dynamics of the particle with a smooth surface differ only slightly from the theoretical prediction for hard sphere colloids, the rough particles diffuse significantly slower. We analysed the experimental data by comparison with model calculations and suggest that the deviating dynamics of the rough particles are not due to increased hydrodynamic interaction with the wall. Rather, the particle roughness significantly changes their DLVO interaction with the wall, which in turn affects their diffusion.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
536 _ _ |a EUSMI - European infrastructure for spectroscopy, scattering and imaging of soft matter (731019)
|0 G:(EU-Grant)731019
|c 731019
|f H2020-INFRAIA-2016-1
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Liu, Yi
|0 P:(DE-Juel1)159482
|b 1
|u fzj
700 1 _ |a Monter, Samuel
|0 P:(DE-Juel1)187093
|b 2
700 1 _ |a Hsu, Chiao-Peng
|0 0000-0002-6994-7708
|b 3
700 1 _ |a Ruckdeschel, Pia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Retsch, Markus
|0 0000-0003-2629-8450
|b 5
700 1 _ |a Lisicki, Maciej
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lang, Peter R.
|0 P:(DE-Juel1)130789
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1039/D1SM01191J
|g p. 10.1039.D1SM01191J
|0 PERI:(DE-600)2191476-X
|n 45
|p 10301-10311
|t Soft matter
|v 17
|y 2021
|x 1744-6848
856 4 _ |u https://juser.fz-juelich.de/record/902125/files/d1sm01191j.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902125
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178787
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159482
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-6994-7708
910 1 _ |a Universität Bayreuth
|0 I:(DE-588)1029605-0
|k UBT
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Universität Bayreuth
|0 I:(DE-588)1029605-0
|k UBT
|b 5
|6 0000-0003-2629-8450
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130789
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOFT MATTER : 2019
|d 2021-01-30
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21