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Abstract

Photosynthesis acclimates quickly to the fluctuating environment in order to optimize the absorption of sunlight energy,
specifically the photosynthetic photon fluence rate (PPFR), to fuel plant growth. The conversion efficiency of intercepted
PPFR to photochemical energy (€,) and to biomass (g.) are critical parameters to describe plant productivity over time.
However, they mask the link of instantaneous photochemical energy uptake under specific conditions, that is, the operat-
ing efficiency of photosystem Il (F'/F,), and biomass accumulation. Therefore, the identification of energy- and thus
resource-efficient genotypes under changing environmental conditions is impeded. We long-term monitored F,//F,, at the
canopy level for 21 soybean (Glycine max (L.) Merr.) and maize (Zea mays) genotypes under greenhouse and field condi-
tions using automated chlorophyll fluorescence and spectral scans. Fy'/F,," derived under incident sunlight during the en-
tire growing season was modeled based on genotypic interactions with different environmental variables. This allowed us
to cumulate the photochemical energy uptake and thus estimate €, noninvasively. €, ranged from 48% to 62%, depending
on the genotype, and up to 9% of photochemical energy was transduced into biomass in the most efficient C, maize geno-
type. Most strikingly, €, correlated with shoot biomass in seven independent experiments under varying conditions with
up to r = 0.68. Thus, we estimated biomass production by integrating photosynthetic response to environmental stresses
over the growing season and identified energy-efficient genotypes. This has great potential to improve crop growth models
and to estimate the productivity of breeding lines or whole ecosystems at any time point using autonomous measuring
systems.

Introduction

Photosynthesis is the physiological basis of plant growth and ~ the energy conversions occurring during plant growth into
crop yield (Long et al, 2006). Future yield improvement will ~ two major processes (Murchie et al, 2009). First, plant pho-
largely rely on higher net photosynthesis and the transduc-  tosynthesis depends on the interception and absorption of
tion efficiency of sunlight into carbohydrates (Zhu et al,  the photosynthetic photon fluence rate (PPFR). Second, the

2010; Reynolds et al, 2012). Classical physiology summarizes  intercepted energy must be transduced into biomass. The
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proportion of PPFR intercepted by the plant relative to the
cumulative PPFR, that is, the light interception efficiency (g;)
and the conversion efficiency of intercepted energy into bio-
mass (€.) describe the potential of biomass accumulation
(Zhu et al, 2010). These two coefficients summarize the
growth dynamic over time, that is, the chemical conversion
of energy into biomass, which in turn allows the physical ex-
pansion of leaf area to increase sunlight interception (Evans,
2013). However, important energy losses that occur during
the growth process, such as photoprotection and respiration
processes, cannot be separated and quantified by €, or €;
Additionally, since growth and stress conditions change over
the course of the day and the growing season, the actual re-
sponse of the plant to fluctuating and stress conditions is
masked.

Nevertheless, €; and €, bare essential information about
overall growth performance and are widely used in plant
physiology and breeding. It allows to describe biomass pro-
duction as:

Sowing

Total biomass = Z PPFR X & X & (1)

Harvest

where the PPFR is cumulated over the growing season and
multiplied by €; and &, (Monteith et al, 1977; Zhu et al,
2010). The €; is defined as the ratio of PPFR at the top and
bottom of the canopy over a given area. In major crops, €;
was mainly improved by increasing the nitrogen use effi-
ciency and the genetic adaption of growth architecture
which resulted in faster canopy closure and higher planting
density, respectively (Duvick, 2005, Muurinen and Peltonen-
Sainio, 2006). Maize (Zea mays) breeding program targeted
upright architecture for decades and increased yield success-
fully (Ford et al., 2008). These efforts were recently enforced
by the introduction of genes from the maize ancestor teo-
sinte to further reduce leaf angle (Tian et al, 2019). In soy-
bean (Glycine max (L) Merr.), €; reaches values >0.9 and is
considered highly optimized (Zhu et al,, 2010; Koester et al,,
2016). The € is defined as the efficiency of produced energy
biomass relative to the cumulative intercepted PPFR by the
canopy over the growing period. In other words, €. describes
the gross photosynthetic efficiency of the full plant stand
minus all respiratory losses (Zhu et al, 2010). In contrast to
€, a general higher €. through plant breeding has rarely
been achieved even when higher photosynthetic rates were
observed (Gutiérrez-Rodri'guez et al, 2000; Murchie et al,
2009; Sinclair et al, 2019). Therefore, €, was often assumed
as constant even though there is natural genotypic variation
in crops (Long et al, 2006; Zhu et al, 2010). In the field, €,
is far below the theoretical maximum revealing that photo-
synthesis is always regulated by environmental fluctuations
and stresses (Murchie et al, 2009). Using genetic engineer-
ing, a higher £, was achieved by stimulating electron trans-
port (ET), by improving photorespiration pathway, or by the
recovery from photoprotection (Kromdijk et al, 2016; South
et al, 2019; Lépez-Calcagno et al, 2020). The €, may also in-
crease under future elevated CO, levels in the atmosphere
which reduce photorespiration (Ainsworth and Long, 2005;
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Morgan et al, 2005; Terrer et al, 2019). In comparison to €,
the genetic improvement of €, was less successful leaving
potential for further yield increases by exploiting the genetic
variation in that trait (Long et al., 2006; Zhu et al., 2010).

The genetic variation in &, is mainly attributed to photo-
synthetic and respiratory processes, which together deter-
mine growth performance. Separating these two processes,
the net photosynthesis can be described with the conver-
sion efficiency of intercepted light energy to photochemical
energy uptake (g.). The respiration losses are taken into ac-
count via the transduction efficiency of photochemical en-
ergy into biomass (&) (Figure 1A). Hence, Equation (1) can
be redefined to:

Sowing

Total biomass = ZHM& PPFR X & X g X & )

where g, is linked to photosynthetic ET. Major losses deter-
mining €, and €, are photoprotective heat dissipation and
respiratory processes including carbohydrate biosynthesis, re-
spectively (Zhu et al, 2010; Porcar-Castell et al, 2014).

In order to understand the fundamental relation of energy
uptake and biomass accumulation over the growing period
(expressed as €, and &), the dynamic response of photosyn-
thesis to the fluctuating environment needs to be taken
into account. Plant photosynthesis acclimates within sec-
onds to fluctuations in light intensity balancing absorbed en-
ergy into three different pathways (Butler, 1978; Demmig-
Adams et al, 2012; Kono and Terashima, 2014; Lazar, 2015).
The first is the photochemical pathway, where the inter-
cepted light energy is converted to ET fueling plant growth
(Baker, 2008). In the second pathway, especially in case of
excess light, non-photochemical quenching (NPQ) occurs
which dissipates intercepted energy as heat (Butler, 1978;
Bilger and Bjorkman, 1990). Under field conditions, up to
70% of the absorbed sunlight energy is lost through NPQ
decreasing photosynthesis and plant productivity (Endo
et al, 2014 Ishida et al, 2014). The third pathway emits
intercepted energy as chlorophyll fluorescence (ChIF) which
is produced when excited electrons in photosynthetic pig-
ments return to the nonexcited state (Kautsky and Hirsch,
1931; Maxwell and Johnson, 2000). The energy emitted by
ChIF is rather minor between 0.5% and 3% (Porcar-Castell
et al, 2014). Biomass accumulation is, therefore, highly de-
pendent on the environmental conditions during growth
period and the plant’s acclimation to it (Kromdijk et al,
2016; Murchie and Ruban, 2020). In addition, the growing
and changing plant canopy causes a complex interplay of
light interception and acclimation of photosynthesis (Evans,
2013; Kaiser et al., 2018).

For a detailed view at €,, the acclimation process of can-
opy photosynthesis under fluctuating conditions needs to
be considered. However, traditional steady-state photosyn-
thesis model as developed by Farquhar et al. (1980) cannot
account for environmental fluctuations (von Caemmerer,
2013). These models lay the basis for our mechanical under-
standing of photosynthesis but need extensions to explain
the dynamic processes of photosynthesis and NPQ under
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Figure 1 Efficiency of biomass production from sunlight energy under
fluctuating conditions was estimated using a high-throughput mea-
suring approach. A, Sunlight energy undergoes several conversions un-
til it is accumulated into biomass. The energy losses occurring under
fluctuating conditions are highly dynamic. First, from the full spec-
trum of sunlight radiation only PPFR can be absorbed by plant pig-
ments. Second, the light interception efficiency (g;) is depending on
the reflected and transmitted light through the plant stand as well as
the canopy cover. Hence, the €; is defined as the ratio of PPFR at the
top and bottom of the canopy over a given area. Third, the conversion
efficiency of intercepted light energy to photochemical energy (g,) is
derived by measuring ET. The losses through heat and ChIF are
depending on the photoprotective acclimation and actual light inten-
sity. The light absorption of non-photosynthetic pigments is negligi-
ble. Finally, the conversion efficiency of photochemical energy which
is transduced into biomass (g.) is depending on the amount of trans-
ported electrons used for alternative electron pathways, cyclic ET,
photorespiration, and cell respiration including carbohydrate biosyn-
thesis. B, Automated LIFT systems scanned plant canopies inside and
outside of the glasshouse as well as in the field in a high spatio-tempo-
ral resolution. The dynamic ET under fluctuating conditions was
assessed via active ChlF revealing the operating efficiency of photosys-
tem Il (Fy//F,'). Reflectance was additionally measured using an in-
built spectrometer. C, Fluctuating Fy//F,,/ and PPFR were measured us-
ing the LIFT and environmental sensors, respectively. A subset of three
subsequent measuring days in soybean is shown. The ETR were de-
rived and cumulative ET and PPF were calculated over these 3 d. The
ratio of the cumulative ET and PPF results in the €, over the growth
period. Gray error bars show the standard deviation of the mean per
15 min period for all measurements of the indicated 3 d (n = 113-543;
total n = 36,891 measurements of soybean genotypes).
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field conditions (Nedbal et al, 2007; Murchie and Harbinson,
2014; Rogers et al, 2017). Active ChIF and gas exchange
measurements are commonly used to determine photosyn-
thesis in the lab and field using hand-held or bench-top
devices (Kalaji et al, 2014). Some devices have been success-
fully modified to allow long-term monitoring of plant
photosynthesis (Song et al, 2016; Hubbart et al, 2018).
However, these solutions are not efficient for
high-throughput measurements in the field since they are
stationary. Therefore, genotype by environment interactions
(G x E) of photosynthesis in response to short-time
environmental changes and their relation to accumulated
biomass over the full growing season are largely unknown
(Murchie et al, 2018; Furbank et al, 2019).

Recently, we achieved the estimation of genotype-specific
photosynthesis under conditions which are close to field
conditions by using a fully autonomous measuring system
(Keller et al, 2019a). The key part of the system is a mobile
light-induced fluorescence transient (LIFT) device, which
enables to induce ChIF from a distance using a fast repeti-
tion rate flash (FRRF) (Kolber et al., 1998; Keller et al., 2019b;
Osmond et al, 2019). An FRRF generates up to 40,000 pmol
photons m™> s™' to induce maximum fluorescence (F..')
within 700 pis allowing noninvasive, high-throughput meas-
urements under incident sunlight (Wyber et al., 2018; Keller
et al, 2019b). The derived operating efficiency of photosys-
tem Il (Fy//F,) expresses the proportion of quantum used
for ET relative to the absorbed light quantum (Baker, 2008).
The LIFT device allows to capture the acclimation of F'/F,/
to fluctuating conditions in a high time resolution. Hence, it
can be used to calculate €, over the growing season.
Additionally, the genetic and spatial variation can be ob-
served by acquiring measurements while moving over the
plant canopy of different genotypes. The F;'/F.,’ and thereof
derived ET rates (ETRs) at given PPFR are linearly related to
CO, assimilation in C, plants and in C; plants when photo-
respiration and cyclic ET is low (Genty et al, 1989; Baker,
2008). In summary, ChlF allows to estimate CO, assimilation
in high spatio-temporal resolution capturing acclimation
processes in a fluctuating environment. It can serve there-
fore as fully automated, noninvasive tool to estimate €, over
the entire growing season in various genotypes.

In this study, we show how to non-destructively estimate
plant biomass via measuring the dynamic photochemical
energy uptake of different crop genotypes over the growing
season. This enabled to assess the fundamental relationship
between photosynthetic performance regulated in a short-
time (using Fy'/F.), and the genetic variation of €, over
larger time intervals, up to biomass production. We used au-
tonomous phenotyping platforms operating in the glass-
house and field enabling to capture G x E of
photosynthesis on canopy level (Figure 1B). Hence, ETRs
are not determined at one time point but integrated over
time depending on the dynamic acclimation of photosyn-
thesis under fluctuating conditions (Figure 1C). In that way,
we overcome biased photosynthesis measurements by
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including G x E of actual conditions. We hypothesize that
€, can be used to approximate the accumulated biomass in
different C; and C, genotypes. The €, was estimated based
on (1) the genotypic response (slope) of Fy'/F,, to increas-
ing or decreasing PPFR (Responsec.pprr) While correcting for
several selected environmental and spectral variables or (2)
ETRs were predicted for every hour of the growing season
based on all available variables. Both approaches allow to es-
timate the absolute amount of electrons transported over
the full growing season (seasonal ET) in different soybean
and maize genotypes. Furthermore, it allowed to separate
respiration from gross photosynthesis estimating €. In order
to validate and generalize this approach, we used data of
seven independent experiments grown under fluctuating
conditions in the glasshouse and in the field subjected to
various stresses.

Results

Automated measuring scans captured the highly dynamic
photosynthetic response in different maize and soybean
genotypes grown under fluctuating conditions (Figure 1, A
and B). The F//F,’ showed a clear diurnal pattern
(Figure 1C). The variation of Fy'/F,/ was high in the spatial
(over the canopy, Figure 2A) and temporal (per hour,
Figure 2B) dimension. Additionally, this data measured over
one day gave a first insight into the genetic variation present
in the response of Fy//F,, to the fluctuating environment.

In soybean, 206,605 measurements under incident sunlight
were taken in 63 d over two seasons from eight genotypes
grown in containers inside of the glasshouse (Figure 2C). In
containers outside of the glasshouse, 8304 measurements
were acquired over 12 d in three genotypes. Additionally,
5972 measurements were taken in 8 d in four genotypes
over one season in the field. In maize, 12,967 measurements
were taken in the glasshouse and 12,047 in the field over
two seasons including 31 measuring days and 12 genotypes.
This resulted in 16,844 and 3,391 data points in a 1-min res-
olution for the soybean and maize measuring periods, re-
spectively. The variation of Fj//F, and the photochemical
reflectance index (PRI) over time is shown in relation to
PPFR (Figure 2C). The PRI showed a clear seasonal pattern
while it was less obvious for F/F,, . In order to show the
Responsegpper across all experiments, the Fj'/F, values
were first adjusted for the PRI values of the same measure-
ment time point for every genotype and experiment and
then correlated with PPFR (Figure 3A). The full models (3)
and (4) explained 45% and 53% of the Fj'/F,/ variance in
maize and soybean, respectively. Finally, the adjusted Fj//F/
means and the Responseg.pprr Of every genotype in every ex-
periment were extracted and correlated with the accumu-
lated shoot biomass (Figure 3B). Note, that Responsec.pprr
is proportional to €, according to Equation (10). While the
adjusted means did not show consistent correlation pattern
with biomass, the Responsec.pprr Was highly correlated in all
experiments. The correlation between Responsegpprr and
biomass was below r=0.46 only in the maize field

Keller et al.

experiment of 2017. This experiment had the fewest meas-
urements, namely 3,185 originating from only 2 d. The high-
est correlation of Responsec.pprr and biomass was observed
in the maize glasshouse experiment in 2017 with r = 0.68
explaining almost 50% of the variation in shoot biomass.
The environmental coefficients for PPFR and PRI showed a
high importance to determine F//F, in both crops
(Supplemental Figure S1). Humidity and the pseudo normal-
ized difference vegetation index (pNDVI) were of lower im-
portance, but relatively higher in maize than in soybean.
The interaction with PRI could more than double the pre-
diction accuracy in four experiments and had only small
negative effects in two experiments compared to the model
results without spectral data (Supplemental Figure S2).
Looking at specific time points, Fy'/F,’ showed also high
correlation with biomass toward the end of the growing sea-
sons in the glasshouse (between 0.3 and 0.9 depending on
the measurement time) for every hourly measurement run
(Supplemental Figure S3). However, this pattern could not
be generalized and was not observed in all experiments, es-
pecially not in the field and the outside container data.
Based on cumulative photochemical energy uptake and cu-
mulative PPFR, the corresponding €, for every genotype was
calculated according to Equations (7)-(9). The €, ranged be-
tween 48% and 62% similarly for soybean and maize geno-
types (Table 1). In contrast, the €, differentiated C; soybean
and C; maize genotypes and ranged between 1.2%-5.1%
and 5.3%-9.3%, respectively. In summary, €, was highly cor-
related with biomass production in all seven experiments.
The above results showed that Responsecpper Was highly
correlated with biomass production. However, PPFR is not
the only determinant of photosynthesis. A precise estima-
tion of seasonal ET requires ETR in high resolution over the
full season to capture the dynamic response to environmen-
tal factors. In order to approximate seasonal ET, we pre-
dicted missing Fy//F,, for every hour of the growing season.
All available data of soybean genotypes, environmental data,
and imputed spectral data were used to train the predictive
model (6) for Fy/F, (Supplemental Figure S4). A data sub-
set of 16 d is shown in Figure 4A. Using all available data,
the model reached an accuracy of r = 0.80 with A = 0.0055.
The relative importance of the model coefficients for Fj//F,/
is shown in Figure 4B. The most important interactions
were between genotypes, environmental conditions, and
spectral variables. Predicted Fj//F,, in soybean reached a
cross-validated accuracy of r = 0.67 (A = 0.0048) using one-
third of the measured days as validation set (Figure 4C). As
expected, prediction accuracies for F,'/F,’ were higher (ex-
cept for the field data) when spectral data were available in
higher time-resolution than ChIF data as compared to the
situations in  which spectral data was imputed
(Supplemental Figure S5). Figure 4D depicts measured and
predicted ETR for the soybean genotypes in the field on a
day in the season 2016. The predicted ETR showed the usual
diurnal pattern in a temporal resolution of 0.5h. The ETR
was correlated (r=049) with CO, assimilation
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Figure 2 Automated phenotyping systems captured the dynamic of photosynthesis in maize and soybean genotypes in high spatio-temporal reso-
lution. A, The spatial variation for the operating efficiency of photosystem Il (Fy'/F.,') is shown for different soybean genotypes measured on May
20, 2017 at 15 h. Data for the first 12 growth containers are shown. Containers were scanned every hour in two lines using two LIFT devices. B,
Distribution of Fy//F.,’ in the different genotypes per hour of one day (May 20, 2017). C, The F;/F,/ and PRI measured over 2 years in containers
inside and outside of the glasshouse and in the field is shown. Gray error bars show the standard error (se) of the mean per hour and crop (n = 1-

1079, maize: total n = 25,014, and soybean: total n = 220,881).

measurements taken over the same day in the field
(Figure 4E). The predicted ETR for every hour in May and
June 2017 is shown in Supplemental Figure S6A. The geno-
typic interactions with environmental and spectral variables
caused the different maxima of the genotypes reached over
the days depending on the contemporary environmental
conditions. Finally, seasonal ET was calculated according to
Equation (8) and correlated with biomass measurements
(Supplemental Figure S6B). These correlations did not show
a consistent pattern and were all negative. In summary, ETR
could be predicted over full seasons with r=0.67

(Figure 4C) but these predictions did not result in accurate
biomass prediction (Supplemental Figure S6B). The more
simple and robust approach based on Responsec.pprr gave a
consistent and reliable predictor (up to r=0.68) for
biomass.

Discussion

In this study, we successfully linked seasonal photosynthetic
performance to biomass production in seven experiments
under glasshouse up to field conditions. Fully automated
LIFT measurements were used to model and predict

220z Aienuep 2z uo Jasn yayjoljqigienusz Hqws) yalene wniuazsbunyosio4 Aq 99Z00+9/10€/1/88 L/81onie/sAyd|d/woo dno-olwspeoe)/:sdny wolj papeojumo(


https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab483#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab483#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab483#supplementary-data

306 | PLANT PHYSIOLOGY 2022: 188; 301-317 Keller et al.

A Maize Soybean
Maize Soybean
== B106 === Amarok
B73 Ascasubi
0.759 Badischer Gelber === Bahia
E === Eijko
e EC334 == Gallec
= 0504} N22 MinnGold
w = P135 S
m— P148 === Tourmaline
= PHT77 m— 22216
0.25 4 PO74
= S052
m— \NV117
500 1000 1500 2000 500 1000 1500
PPFR (umol photons m™2s™")
B ® Control A Drought O High nitrogen O Low density
1.0e+00 4 r=0.17 r=0.18 r=0.08 r=0.49 r=0.14 r=-0.34 r=-0.67
e é 7.5e-01+
w 3
‘\c- & 5.0e-01 g0 - 1 Qo L] ¢
Ue-011 < . jﬁ Yo et ~
[T g vye e VA ar P > Y o ) ¢v\'f' a .LJD. g b‘\ ‘:
2.5e-011 M
2e-04-4 r=0.68 r=0.61 r=0.37 r=0.54 r=0.46 r=0.55 r=0.54
& i
. & 'S )
E O  0e+00
ey 5 o™ [ ) L ]
& b 2 e 0 eh ( ] ° Lo 3 (..ﬁ'
~ & e ) ) 7AN ST g o [}
LLO— 8. ® [ ]
% [ J
¢ ~2e-04-

L L L T T L T
NN RN S RN SN RSN Q.Qb‘Q.Q Q.Q(bg'.\%q’ ¥ o° & 0(90' NN, Qb N

Maize Maize Maize Soybean Soybean Soybean Soybean
Inside—2017 Field—2016  Field—2017 Inside—2016 Inside—2017 Outside—2016 Field—-2016

Biomass (kg m_z)

Figure 3 Photosynthetic quantum efficiency (F'/F.,’) of soybean and maize genotypes was related to PPFR and biomass. A, The response of ad-
justed FJ/F, to PPFR is shown for every genotype. B, The adjusted Fj/F,’ means and the genotypic responses of Fj/F.’ to PPFR
(Responsec.pprr) Were correlated with measured biomass in all seven experiments. Biomass was shoot biomass, except for the Maize field data it
was grain biomass. In soybean, the Responsec.pprr Was calculated separately for each container or plot according to Equation (5) using model (3),
whereas in maize it was adjusted over all containers and plots using model (4) due to the lower amount of measurements. For the modeling,
measurements were previously averaged for every minute, genotype, treatment, and repetition. Gray error bars show the st of the adjusted mean
respective response (n = 8-504 for Fy//F,,/; n = 1-11 for biomass). Plants were grown under control conditions, except three containers were sub-
jected to drought, five containers were fertilized with high nitrogen and eight maize genotypes were planted in low density in 2017.

photosynthesis including G x E, specifically dynamic sea-  estimate the top of canopy CO, assimilation and biomass
sonal ET, in 21 soybean and maize genotypes. We then com- production under fluctuating conditions. In previous studies,
bined photosynthetic performance and spectral indices to  biomass was estimated based on CO, assimilation under
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Linking photosynthesis and biomass production

Table 1 The conversion efficiency of intercepted light energy to pho-
tochemical energy (g,.), the conversion efficiency of photochemical
energy transduced into biomass (&.), and the conversion efficiency of
intercepted energy into biomass (€. = €, X €, of 21 maize and soy-
bean genotypes over the growing season

Crop Genotype e & &

Maize  B106 0.5 (0.001) 0.057 (0.003) 0.029 (0.001)
Maize B73 0.497 (0.001) 0.065 (0.003) 0.033 (0.002)
Maize  Badischer Gelber 0.479 (0.001) 0.065 (0.005) 0.033 (0.003)

Maize E 0.53 (0.001) 0.056 (0.005)  0.03 (0.003)
Maize  EC334 0.531(0.001) 0.053 (0.003) 0.028 (0.001)
Maize  N22 0.527 (0.001) 0.093 (0.005) 0.049 (0.003)
Maize  P135 0.549 (0.001) 0.063 (0.003) 0.034 (0.002)
Maize  P148 0.528 (0.001) 0.075 (0.003)  0.04 (0.001)
Maize  PHT77 0.556 (0.001)  0.07 (0.003) 0.039 (0.001)
Maize  PO74 0.539 (0.001) 0.066 (0.003) 0.035 (0.001)
Maize  SO52 0.557 (0.001) 0.085 (0.003) 0.047 (0.001)
Maize ~ W117 0.495 (0.001) 0.057 (0.003) 0.029 (0.001)

Soybean 22216
Soybean Amarok
Soybean Ascasubi
Soybean Bahia
Soybean Eiko
Soybean Gallec
Soybean MinnGold
Soybean S1

Soybean Tourmaline

0.499 (0.022) 0.021 (0.004)  0.01 (0.002)
0.506 (0.023) 0.022 (0.004) 0.011 (0.002)
0.622 (0.029) 0.049 (0.006)  0.03 (0.003)
0.544 (0.018) 0.051 (0.003) 0.028 (0.002)
0.533 (0.019)  0.05 (0.004) 0.026 (0.002)
0.515 (0.023) 0.024 (0.004) 0.012 (0.002)
0.503 (0.015) 0.041 (0.003) 0.021 (0.002)
0.508 (0.023) 0.012 (0.004) 0.006 (0.002)

0.51 (0.023) 0.036 (0.004) 0.018 (0.002)

The light interception efficiency (g;) was assumed as constant with a value of 0.9.
Adjusted means and st (in brackets) were calculated over all replicates and experi-
ments (n = 4-20).

controlled conditions (Dutton et al, 1988) or based on
model calculations (Sinclair, 1991). Recently, spectral indices
and passive ChIF were used to predict either photosynthesis
(Inoue et al,, 2008; Camino et al,, 2019; Hikosaka and Noda,
2019; Meacham-Hensold et al, 2019) or yield (Swatantran
et al, 2011; Montesinos-Lopez et al, 2017 Li et al, 2020;
Pique et al, 2020). However, neither passive ChlIF nor spec-
tral indices measure directly ETR like active ChIF methods
(Schreiber et al, 1986). The relation of photosynthesis and
biomass accumulation was studied rarely, for example, in an
Arabidopsis mutant compared to the wild-type under lab
conditions (Weraduwage et al, 2015) and in wheat spikes
under steady-state measurement conditions (Molero and
Reynolds, 2020). A general relation of photosynthesis and
biomass production under fluctuating conditions was de-
scribed for the first time in this study.

Noninvasive estimation of genotypic energy
conversion

In the classical physiological approach, €, also called
radiation use efficiency, is determined destructively via har-
vesting biomass over time (Reynolds et al, 2000; Koester
et al, 2016). In contrast, our approach does not require de-
structive measurements and is based on noninvasive physio-
logical measurements. It allows the approximation of €. via
€. using automated F,'/F,, scans for every growing period.
This facilitates the identification of genotypes with superior
photosynthetic performance under specific conditions.
Indeed, there was a high genetic variation for €, and €, in
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the soybean and maize genotypes (Table 1). The €, values
of around 0.5-0.6 indicate high losses through NPQ pro-
cesses under fluctuating conditions. Similar NPQ losses were
reported in a field study in rice (Ishida et al, 2014). The re-
covery from photoprotective NPQ state was recently tar-
geted in order to develop more efficient plants (Long et al,
2006; Kromdijk et al, 2016). These plants were genetically
engineered, leaving the field open for further screening of
the natural genetic variation in that trait (Murchie and
Ruban, 2020). Whereas the €, values were comparable in C;
soybean and C, maize genotypes, the €, values reached 3.4%
and 6.7% on average, respectively. These significantly lower
€, values in the C; crop are partly explained due to the pho-
torespiration which does not occur in C; plants (Zhu et al,
2010). The €. of soybean and maize genotypes reached up
to 3.0% and 4.9%, respectively, a lower efficiency than previ-
ously reported for C; (5.1% for wheat and barley) and C,
(7.4% for maize) crops (Amthor, 2007). This was probably
due to suboptimal growth conditions and less productive
genotypes, for example, the two soybean genotypes with €,
below 1.1% were cold sensitive and not adapted to grow in
colder climate (Keller et al, 2019a). In summary, the pre-
sented approach has a great potential in physiological breed-
ing, for example, as an early selection trait to identify
resource-efficient  genotypes with low NPQ losses.
Additionally, crop growth models can be augmented with
genotype-specific €, and &, values.

Environmental conditions and canopy structure
influence photosynthetic efficiency

The accuracy of estimated F,//F,, values and, therefore, of
seasonal ET calculations, depends on the model’s ability to
capture relevant environmental interactions. Based on our
previous investigation, we focused on the environmental
interactions of Fy'/F,/ with PPFR, humidity, and spectral in-
dices (Keller et al, 2019a). The influence of PPFR to Fj//F,/
is connected to NPQ mechanism within the light-harvesting
complex of photosystem Il which dissipates excess energy as
heat (Baker, 2008; Ruban et al, 2012). On leaf level, PRI is
linked to changes in NPQ and light use efficiency (Gamon
et al, 1992; Barton and North, 2001) and varies within the
canopy (Foo et al, 2020). However, on canopy level, it be-
came clear that the PRI is very sensitive to changes in can-
opy structure and chlorophyll content (Garbulsky et al,
2011). Structure-related changes are likely to dominate the
information contained in PRI, especially during seasonal
measurements (Gitelson et al, 2017). Additionally, PRI was
strongly linked to leaf area index probably further connected
to light distribution in the canopy (Wu et al, 2015). In
agreement, we found a clear visible seasonal pattern of PRI
These multiple factors represented by PRI probably explain
the high importance of PRI interaction with F'/F,, in the
models (3) and (4) (Supplemental Figure S1). In addition to
PRI and PPFR, F/F, was adjusted for minor effects of
pNDVI and humidity. The effect of humidity on photosyn-
thesis was mainly studied using vapor pressure deficit, which
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Figure 4 Photosynthetic parameters were predicted over full days based on environmental data and frequently measured photosynthetic quan-
tum efficiency (Fy'/F.’) values and spectral indices. A, PPFR, Fy'/F,,’ and PRI of soybean genotypes were measured on 83 d over two growing sea-
sons in four experiments. A data subset of 16 d shows the fluctuating growing conditions in the glasshouse. Measured values were averaged per
hour and genotype (n = 1-64, total n = 20,721). Missing spectral data were imputed for the entire growth period in a 1-h resolution. B,
Continuous measured environmental data and imputed spectral data were used to model F//F,’. Model coefficients show the importance of
each variable group and their interactions. Interactions were summarized between Genotype (G), environmental variables (E), spectral indices
(Spec), and days after sowing (DAS). C, Prediction accuracy for predicted F'/F,/ was evaluated using cross-validation, that is, two-third of the
measuring days were used as training set to build model (6) and one-third as validation set to compare predicted versus measured values. The al-
gorithm to solve the linear equation was Ridge Regression. Only predicted values of the validation set are shown. The values were averaged over
the different replicates (n = 1-8, total n = 6,279). The regression line between predicted and measured values is shown in gray. D, Measured and
predicted F//F,, as well as measured PPFR were used to calculate ETR for every half hour of a day for all four genotypes in the field (n = 1-14, to-
tal n = 239). The colors refer to the genotype legend in E. E, Measured and predicted ETR based on LIFT measurements were compared to CO, as-
similation measured by LI-COR in the same half hour and plot (n = 1-5 for ETR, total = 89; LI-COR: n = 2-161, total n = 1,035). Gray error bars
show the st of the mean in all panels.

is positively correlated with leaf transpiration rate and nega-
tively with CO, assimilation rate (Morison and Gifford, 1983;
Peterson, 1990; Lawson et al, 2002; Ribeiro et al, 2004
Zhang et al, 2017). The NDVI correlated with plant produc-
tivity although saturating at high leaf area index (Gamon
et al, 1992 Ji and Peters, 2003). The pNDVI was associated

with canopy structure, based on differences of measure-
ments on fixed, flat leaves and leaves with natural leaf angles
(Keller et al., 2019a). That structure indeed may define pho-
tosynthetic performance was recently demonstrated by link-
ing the wheat spike photosynthesis to biomass production
(Molero and Reynolds, 2020). The PRI and pNDVI bare
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Linking photosynthesis and biomass production

information about canopy structure and leaf area index
which potentially accounts for within canopy photosynthe-
sis. In summary, the inclusion of spectral indices into the
Fq'/F' models substantially improved biomass estimation
(Figure 3B compared to Supplemental Figure S2), partly ac-
counting for differences in light distribution within the can-
opy and leaf area index.

Photosynthetic response to light intensity
corresponds to biomass

The dynamic response of Fj//F,/ to environmental changes
and stresses complicates the estimation of seasonal photo-
synthetic performance. Adjusted means of F//F, over the
growing season showed correlation with biomass but not in
a consistent manner (Figure 3B; Supplemental Figure S3).
This could have two explanations. First, the F;'/F.,” measure-
ments are biased toward specific PPFR conditions, which are
not critical for biomass accumulation, for example, by the
overrepresentation of low light conditions in the measured
periods. Second, proximity sensed Fy'/F., tends to change
with plant height when the target leaves are not in the fo-
cus of the excitation flash, as was shown in our previous
study using the LIFT device (Keller et al, 2019a). Therefore,
the genotypic interactions with environmental and spectral
variables were additionally calculated as unbiased estimates
of photosynthetic performance toward both influences.
Indeed, the Responsec.pprr Was highly correlated to biomass
in all seven experiments (r ranged from 037 to 0.68;
Figure 3B). Hence, the Responsegpprr explained up to 46%
of the variation for biomass. The seven experiments repre-
sented a wide range of genotypes and environments includ-
ing glasshouse and field conditions as well as (stress)
treatments such as drought, cold, and low chlorophyll con-
tent. We conclude that the photosynthetic Responsec.pprr
accounts for different environmental conditions or stresses
and is tightly linked to biomass accumulation.

Predicted photosynthesis over whole seasons

For days which had no measurement data, ETR could be
predicted based on environmental variables only
(Figure 4C). The imputation of missing PRI data on days
with no measurements decreased the prediction accuracy
(Supplemental Figure S5). Hence, spectral reflectance or sun-
induced ChIF parameters derived from airplanes or satellites
could improve F,'/F,’ predictions and extend the predic-
tions to wider areas (Drusch et al, 2017, Mohammed et al,
2019). The measured and predicted ETR allowed to estimate
CO, assimilation in soybean genotypes with r =049
(Figure 4E). The ETR does not account for photorespiration
and other active electron sinks downstream of photosystem
Il (Baker, 2008). Therefore, low prediction accuracy might be
expected. However, comparing leaf measurements directly,
the relation of LIFT-derived to gas exchange measurements
was shown before with high accuracy (R = 0.94)
(Pieruschka et al., 2010). In this study, the comparison of gas
exchange measurements on leaf level with the predicted
ETR on canopy level might explain the lower prediction
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accuracy. Furthermore, the estimation of seasonal ET was
probably biased because it was not independent from plant
height, canopy structure, and interactions with further envi-
ronmental variables (Supplemental Figure S6). In conse-
quence, the approach to model F;'/F,, using Responsec.pper
was more robust and tighter linked to biomass production.

Efficiency estimates: caveats and challenges
Improvements in model accuracy and efficiency estimates
need to be considered in four areas: First, the root biomass,
canopy cover, and &; can be measured additionally to re-
place the corresponding model assumptions (Sinclair and
Muchow, 1999). The time resolution of spectral measure-
ments could be improved, for example, by acquiring fre-
quent airborne measurements. Second, the focus of the LIFT
flash requires a higher dynamic range to ensure unbiased
measurements at changing measuring distances (Keller et al,
2019a). Third, the relation between top of canopy photosyn-
thesis and within canopy photosynthesis, that is, the hetero-
geneities of microclimatic conditions within the canopy,
needs to be addressed in more detail (Schurr et al, 2006;
Nichol et al, 2012; Zhu et al, 2012). The spectral indices
accounted partially for the top of canopy structure in our
simplified one-layer canopy model. However, the inner,
light-limited canopy contributed almost 50% to the total
canopy photosynthesis based on 3D canopy reconstruction
in rice (Song et al,, 2013). Such 3D canopy models could im-
prove the estimation of €, for the whole canopy associating
every point in the canopy with its predicted light intensity
and specific photosynthetic response. Around 70% of the
intercepted PPFR is absorbed by the outer canopy, which
consequently dissipates most of the excess energy through
NPQ (Song et al, 2013). Therefore, the derived €, in our
study based on top of canopy measurements are relevant,
but rather underestimated because the remaining 30% of
the absorbed energy was likely used at higher Fj/F, in the
inner canopy. In turn, €, could not be calculated precisely
and was rather overestimated. Fourth, regarding tempera-
ture, a major effect of temperature was found not for F '/
F../ but for ET efficiency (Keller et al, 2019a). ET efficiency
and its response to temperature may have potential for fur-
ther improvement of biomass prediction, especially in the
light-limited, inner canopy, since positive correlations with
biomass were observed in all experiments (Supplemental
Figure S7). In conclusion, further studies are necessary to
improve biomass prediction based on seasonal ET of the
full canopy. In this study, we demonstrated that top of can-
opy F/F./ measurements were sufficient to screen for
NPQ efficient genotypes with high €, and showed that
Responsecpprr  highly  correlated with  shoot biomass
production.

We presented a crop growth model approach which uses
the fundamental response of photosynthesis to environmen-
tal (stress) factors to predict biomass in various soybean and
maize genotypes grown under different conditions. This
noninvasive and automated approach can be refined to esti-
mate biomass production from individual plants (or
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breeding lines) up to global ecosystems under any environ-
mental conditions. Additionally, it could lead to a global
map of photosynthesis and a better understanding of limit-
ing environmental factors based on global measurements as
in the oceans (Falkowski et al., 2017) and may be combined
with gross plant production models based on satellite data
(Drusch et al., 2017; Pique et al,, 2020).

Materials and methods

The contribution of photosynthesis on biomass accumula-
tion was assessed for 21 genotypes. The €, and €, were esti-
mated in seven independent experimental data sets under
natural fluctuating conditions in the glasshouse up to field
conditions.

Plant material

In total 12 maize (Z mays) and 9 soybean (G. max (L)
Merr.) genotypes were evaluated. Maize genotypes were se-
lected within the German plant phenotyping network and
provided by the Leibniz Institute of Plant Genetics and Crop
Plant Research. These genotypes represent a diverse set with
contrasting shoot and root traits. Soybean genotypes differ
in cold tolerance and include the chlorophyll-deficient mu-
tant MinnGold (Campbell et al, 2015). The -cultivars
Ascasubi, Gallec, and Tourmaline are registered in the
European common catalog of varieties (European
Commission, 2016). The remaining five soybean genotypes
are described by Keller et al. (2019a) originating mainly from
the Agroscope breeding program in Changins, Switzerland.
Maize and Soybean genotypes evaluated in each experiment
are listed in Supplemental Table S1.

Growth conditions

In total seven experiments took place at Campus Klein
Altendorf (University of Bonn, Germany, 50°37' N, 6°59' E)
in 2016 and 2017. The plants were grown under incident
sunlight and fluctuating conditions in the glasshouse up to
the field. Three experiments were carried out in containers
inside the glasshouse and one experiment in containers out-
side of the glasshouse. The facility is an unheated glasshouse
without artificial lightning (called Mini-plot) as described by
Thomas et al. (2018). An automated positioning system
allows measurement scans over plant canopies growing in
containers inside and outside of the glasshouse (Figure 1B).
Other three experiments were conducted directly in the
field. The sowing and harvest date of all experiments are
shown in Supplemental Table S1. The field site has a loamy-
clay silt soil (luvisol) and containers were filled with soil
from there (Hecht et al.,, 2016).

Containers

Plants were grown in containers (111 x 71 x 69cm, AUER
Packaging, Belgium) with a volume of 535L under natural
fluctuating sunlight inside and outside of the glasshouse.
Control plots were watered using drop irrigation and fertil-
ized after common agriculture practice. All containers were
weeded manually. Soybean and maize genotypes were sown

Keller et al.

in two rows per container (40-cm row distance) in a density
of 30 and 20 plants per square meter, respectively.

Inside the glasshouse, Maize and soybean genotypes were
grown under controlled conditions as described in Keller
et al. (2019a) and, a subset of genotypes, under drought
conditions. Three genotypes (Amarok, S1, and 22216) re-
ceived about 70% of water supply in October and 90% in
November 2016 compared to control conditions. Genotypes
were replicated in one to four containers per treatment (see
Supplemental Table S1).

Outside of the glasshouse, three soybean genotypes
(MinnGold, Eiko, and Bahia) were sown in 2016. Containers
were watered, with the same irrigation system as inside,
once or twice a week depending on the amount of rain.
Genotypes were grown under controlled (no application of
fertilizer) and high nitrogen conditions (8g of nitrogen in
the form of ammonium nitrate dissolved in water was ap-
plied on 14 July 2016). MinnGold and Bahia genotypes were
replicated in two containers per treatment and Eiko in one.

Field

Soybean and maize genotypes grown in the field were not
irrigated. Fertilizer and plant protection agents were applied
after good agricultural practice as described in Keller (2018).
For the maize genotypes, the plot size was 3 X 3m with a
sowing density of 10 seeds m~> as control and 5 seeds m™>
for low-density treatment. Maize genotypes were sown in
7-11 repetitions in 2016 and 2017 in a randomized block
design (Supplemental Table S1). For the soybean genotypes,
the plot size was 4 x 1.5m with a sowing density of 100
seeds m™” due to low germination rates. Four genotypes
(Ascasubi, MinnGold, Eiko, and Bahia) were sown in four
repetitions in 2016.

ChIF and spectral measurements

The LIFT-REM (Soliense Inc, New York, NY, USA) device
was used to measure photosynthesis by probing ChIF from
the distance (Kolber et al, 1998; Keller et al, 2019b). The
LIFT device operated in a high-throughput mode scanning
the top of the plant canopy (Figure 2A). The scans were
performed in constant speed (about 10cm s™') using FRRFs
in a 2s interval. All measurements were acquired under inci-
dent sunlight. The measurement direction was toward the
south to avoid shading of the target leaves.

The FRRF generates an excitation power of about
40,000 pmol photons m™ s™' at 60cm distance using 300
excitation flashlets in 2.5-us interval. The ChIF yield after the
1st and 300th excitation flashlet equals minimal fluorescence
and maximal fluorescence (F, in the dark, F, in the light),
respectively (Keller et al, 2019b). The difference between
both ChIF yields results in the variable fluorescence (F, in
the dark, F; in the light) used to calculate F; /F,,’. The
measured area in the focus of the LIFT instrument at 60 cm
distance was a circle of about 7 cm®. The light spectrum on
the measurement area was recorded by the built-in STS-VIS
spectrometer (Ocean Insight, Orlando, FL, USA) from 400 to
800 nm with a resolution of 0.46 nm through the LIFT lens.
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Spectral measurements with 200 -ms integration time were
acquired in-between the FRRFs.

Inside and outside of the glasshouse, crop canopies of dif-
ferent genotypes growing in containers were scanned in
3 X 30 cm steps. This resulted in about 18 and 36 measure-
ments per container when using one and two LIFTs, respec-
tively. The measuring distance was between 1.4 and 0.8 m
depending on the plant height. The scanning of all contain-
ers was repeated every hour up to 5 d in a week as
described by Keller et al. (2019a). In the containers outside
of the glasshouse, the measurements were done sporadically
over the growing season. All measurements were acquired
in fully automated measurement runs. Regarding the control
containers inside the glasshouse, the LIFT data of soybean
and maize described by Keller et al. (2019a) were used.

Field measurements were taken by an autonomous field
robot (FieldCop) or by a self-built, manually driven field cycle
(field4cycle). The field4cycle had a track width of 3m and
measured on top of the plot within the track. The autono-
mous field robot (Raussendorf GmBH, Obergurig, Germany)
was equipped with a flexible boom (Littich Ingenieure
GmbH, Dohna OT Borthen, Germany) allowing measure-
ments from up to 4m in height and 3.8 m next to the ma-
chine track. The field robot took measurements in soybean
on August 15, 2016. All other days in the field were mea-
sured with the field4cycle. About 15-20 measurements were
acquired per plot. The distance between canopy and LIFT
lens was kept between 50 and 80cm. Measurement runs
over the full field were done sporadically over the growing
season.

Gas exchange measurements

Gas exchange measurements were carried out in the field
on August 15, 2016 using two LI-6400XT devices (LI-COR,
Inc, Lincoln, NE, USA) with transparent chamber heads. A
fully expanded leaf was measured in horizontal position on
top of canopy. The transparent chamber head allowed am-
bient sunlight to drive photosynthesis. Plots were measured
alternately for around 15min using two LI-CORs logging
data every 10 s. Measurements with a stability factor of less
than 0.6 were filtered out. Air temperature in the chamber
was controlled to match the ambient temperature in the
field. The air was coming from inside a 50 L canister with
open cap to ensure stable CO, content. The LI-CORs were
matched every 45-60 min.

Harvest and biomass

Plants were harvested when most genotypes in a trial
reached full maturity. Regarding the experiments carried out
in containers, 2-7 plants per container were harvested man-
ually. Plant material was dried for 48 h at 70°C and individ-
ual plants were weighed. Maize field plots were harvested by
a maize harvester and fresh weight of grain biomass was
weighted for every plot. The dry weight per plot was calcu-
lated based on the water content of the biomass. The water
content was measured, from a subsample of freshly shred-
ded and well-mixed harvested biomass from each plot, as
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the ratio of 200 g biomass before and after drying. From the
soybean field trial, a plot area of ~3m? was harvested and
weighed after drying for 24h at 100°C. This dry weight was
corrected for the number of harvested plants per plot. The
harvest date was the same for each experiment except for
the soybean field trail where genotypes were harvested on
different dates (Supplemental Table S1).

Environmental data

Temperature, humidity, and PPFR data were recorded at
~1.5-m above ground every minute. Up to three stations
recorded data inside of the glasshouse, one outside at the
containers, and further three in the field. The sensor system
was described by Keller et al. (2019a). Environmental records
were averaged per minute for each condition (inside the
glasshouse, outside the glasshouse, and field) and associated
with every LIFT measurement performed in the same min-
ute and condition.

Data processing

ChlIF data were processed as described earlier using ChlF in-
duction and relaxation (Keller et al, 2019a, 2019b). Spectral
values of every measurement were binned and averaged to
even numbers of wavelengths. Reflectance was calculated us-
ing a gray reference look up table as described by Keller
et al. (2019a). Briefly, every spectral measurement of a plant
was divided by a spectrum taken on a gray reference. Since
such a reference was not immediately available, spectra were
corrected with a reference spectrum on a look up table at
similar light intensity. The look up table data were generated
between May 15 and May 18, 2017 within the diurnal meas-
urements. In contrast to measurements inside the glass-
house, in the field not many reference measurements were
taken therefore the look up table was created by scaling the
spectra relative to the PPFR when the measurement took
place. In that way, spectra were generated from 200 to 1,500
PPFR. The following variables were derived based on spectral
data. Absorbance was calculated between the absorbance
maxima of the chlorophyll, at 420-500 and 640—690 nm:

Ab A ( 420 nm S Isi | 640 nm S Isi I) 400 nm
sorption — E ectralsigna g ectralsigna E
P 500 nm P 8! + 690 nm P 8! / 800 nm

Reference signal

Three established spectral indices, PRI, normalized phaeo-
phytinization index (NPQI) and NDVI, were calculated using
the following wavelengths:

PRI = (R530 - R570)/(R530 + R570) adapted from
Gamon et al. (1992)

NPQI = (R416 - R436)/(R416 + R436) adapted from
Penuelas and Filella (1998)

NDVI= (R750 - R706)/(R750 + R706) adapted from
Frampton et al. (2013) shifting the selected red and near-
infrared wavelength toward the end and the beginning of
their spectral range, respectively.

Spectral indices were calculated based on the corrected
reflectance spectrum or directly on the raw digital numbers
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of the spectrometer output. In the latter case, uncorrected
indices were denoted with a “p”, for example, pNDVI
Pseudo indices were used additionally since the spectra used
for correction are only an approximated white reference
spectrum based on the described look up table. The irradia-
tion variable recorded the signal at 680 nm detected by the
LIFT before the FRRF. For the following analysis only light-
adapted measurements were selected (PPFR > 100 pmol
photons m™ s™'). Data points more distant than 2.5 times
the interquartile range from the first respective third quan-
tile were removed for every spectral variable per crop and
treatment, for every environmental variable per month, and
for biomass per experiment. Fy'/F,,’ and spectral values were
averaged per minute, repetition, treatment, and genotype.

Modeling on observed data

Based on the F;'/F,/, spectral values and its associated envi-
ronmental variables derived over the measuring periods in a
1-min resolution, adjusted Fq’ /F./ means and Responsec.pper
were calculated for every genotype. In maize, Fy'/F., values
(Vijkim) can be described under different environmental con-
ditions including genotypic interaction with environmental
covariates using the following linear model:

Yiim = W=+ E + Gj + Reginy + Hm + P + I + Ny + Pliy+GPjy
+ Glim + GPli + €jjkim

®3)

where u is the intercept, E; is the fixed effect for the experi-
ment i, G; is a fixed effect for the genotype j, Ry is a fixed
effect for the replicate k nestled within experiment i and
treatment |, H,, is a fixed effect for the humidity value at
the time point m of the measuring period in the 1-min res-
olution, P, is a fixed effect for the PPFR value at the time
point m, |, is a fixed effect for the PRI value at the time
point m, N,, is a fixed effect for the pNDVI value at the
time point m, Pl,, is the interaction between the PPFR and
PRI value at time point m, GPj,, is the interaction between
genotype j and PPFR value at time point m, Gl;,, is the in-
teraction between genotype j and the PRI value at the time
point m, GPl;,, is the interaction between genotype j, PPFR,
and PRI value at the time point m, and &, is the error
term.

In soybean, genotypic interactions were fitted on plot level
in order to account for spatial effects between the plots or
containers using the following linear model:

Yijkim = H+EI+CJ+RI<(I/) + Hm + Pm + I + N + Pl
+ GRyiny + GPRum(in + GIRym(ity + GPIRym(ity + Eijeam

(4)

where G; GP;,,, Gl;,, and GPl;,,, were fitted with an interac-
tion of every replicate k nestled within each experiment i
and treatment /. This results in the interaction terms GRj,
GPRjkm(,'/), GIRjkm(,'/)’ and GPIRjkm(,'/) which allow the ﬁtting of
Fq'IFw' values on plot level. These interaction terms were
omitted in maize because less data per plot was available.
The H,,, P,, I, and N,,, are effects of covariates which were
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chosen for modeling based on previous analysis of impor-
tant factors determining Fy'/F,/ (Keller et al, 2019a). Note
that the covariates have a numeric value at every time point
m which multiplied by the regression coefficient () results
in the effect at time point m, for example,
GP = {GP;,} = BgpZcXp, where Bgp is a vector with a re-
gression coefficient for every genotype introduced as
Responsec.pprr, Zg is a design matrix for the genotypes, and
Xp is a vector of PPFR values. The Bgp and Pgpr coefficients
of GP for maize and GPR for soybean, respectively, were
extracted using the emtrends command of the emmeans R
package (Lenth, 2019). These interaction coefficients, Bgp,
and Pgpr, Were calculated as followed:

Responsecppsr = 0 E (y)/0 Xp (5)

where OF (y) denotes the delta of the expected (fitted) Fy'/
F./ values and 0Xp the corresponding delta of the PPFR val-
ues. Hence, the Responsecpper expresses the slope of Fy'/F.,’
with increasing or decreasing PPFR for every genotype
(Eeuwijk et al,, 2016). It is also called the genotypic interac-
tion of Fy'/F.,, with PPFR. Finally, the adjusted mean of F;//
F.. and Responsec.pprr Were correlated with measured bio-
mass and the Pearson correlation coefficient (r) was
calculated.

Predictive modeling for time points without
measuring data

All described environmental and spectral variables were
used for predictive modeling. In addition, descriptive varia-
bles for hour, month, and days after sowing (DAS) were in-
cluded. For the spectral variables, missing values (when no
measurement data was available) were imputed separately
for every genotype for every hour of the growing season
with averaged PPFR values >100pmol photons m™> s,
This was done based on the first six principal components
derived from the available numeric environmental and de-
scriptive variables, that is, hour, DAS, humidity, temperature,
PPFR, the square root of PPFR, irradiance, and the calculated
spectral variables. The regularized iterative principal compo-
nents analysis algorithm implemented in the missMDA R
package was used (Josse and Husson, 2016).

The Fy'/F, values (yjm) were predicted using Ridge
Regression implemented in the glmnet R package (Friedman
et al, 2010). The following random-effect model adapted
from Jarquin et al. (2014) was used:

Yikm = U+ Ei + Gj + Vi + Wy, + QWi + Eijiim 6)

where 1 is the intercept, E~N(0,c7) is a random effect for
the experiment i, GjNN(O,GZG) is a random effect for the ge-
notype j, v = {v,,} is a matrix with numeric columns for the
month to account for seasonal trends, for the hour of the
measurement to account for daily trends, for the irradiation,
the absorbance as well as the reflectance and rows for every
time point m of the measuring period in the 1-h resolution.
It was assumed that v~N(0,VG?>,), where V is the covariance
matrix of v (i.e. V = w). Additionally, w = {w,,} is a matrix
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with columns for PRI, pNDVI, NPQI, DAS, humidity, temper-
ature, PPFR as well as the square root of PPFR and rows for
every time point m with w~N(0,Qc?,), where Q is the co-
variance matrix of w (ie. Q=ww/). The term
Gw~N(0,ZcZ'c ° Qo°c,) is the interaction between every
genotype j and the environmental values in w at time point
m, where Zs is the design matrix for the genotypic effects
and ° denotes the Hadamard product. Lastly, sijk,mNN(O,ng)
is the error term. The vector of all predictor coefficients, 3, is
restricted by A which is determined by internal cross-
validation (Friedman et al, 2010). The ridge parameter A
shrinks the coefficients of correlated variables according to
the L, norm to reduce their variance (Hastie et al, 2009).
Datapoints with associated PPFR values >100 and
< 2,000 umol photons m™ s~" were averaged per hour and
plot for the modeling. All numeric covariates were standard-
ized with mean = 0 and standard deviation = 1. The Fj//F,/
values were predicted for every hour of the growing season.

Cross-validation of predicted F,'/F,, values

Cross-validation was done by using the data of two-third of
the measuring days as training set and the remaining mea-
suring days as validation dataset. Then, Fj'/F, values were
predicted for the days of the validation set. Pearson correla-
tion coefficient (r) was used to assess prediction accuracy of
measured and predicted values. This procedure was re-
peated once with available spectral data in the validation
set and once without. The first case assumes that additional
spectral data is available from other sensor, for example,
mounted to unmanned aerial vehicles.

Calculations of conversion efficiencies

In-between light interception and biomass production, light
absorption drives ET while excess energy is dissipated as
heat. In order to separate photochemical energy uptake
from heat losses, seasonal ET and €, were calculated. The re-
spiratory losses during biomass accumulation are considered
by the calculation of g,

Seasonal ET

First, ETR were calculated for every genotype in an hourly
resolution over the growing season:

ETR = Fy' /Fim’ prediced X PPFR X 0.5 X & )

whereas the factor of 0.5 approximates the fraction of PPFR
which is received by photosystem Il (Baker, 2008). The g;
was assumed to be 0.9 over the full season because no pre-
cise measuring data was available. Indeed, the radiation in-
terception efficiency can reach values up to 0.9 in soybean
stands (Koester et al, 2016). The intercepted light energy
was assumed to fuel 100% photochemistry because the con-
tribution of nonphotosynthetic pigments to light absorption
is minor (Porcar-Castell et al, 2014). Hourly ETR values were
estimated based on F,'/F, values derived from models (3)
and (4) using simple extrapolation based on Equation (5);
and from model (6) including multiple environmental
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interaction effects for every hour. For the simple extrapola-
tion, the Responsegpprr and a common intercept equal to
the average of the F///F, in low light (PPFR < 105 pmol
photons m™> s™") over the entire season per crop were used
to calculate hourly Fj//F,, values. The complexity of light
scattering and photosynthesis within the canopy could not
be addressed in this study. The canopy photosynthesis was
simplified and assumed to origin from one heterogenous
layer. In order to summarize photochemical energy uptake
over the entire growing season,

Germination

Seasonal ET = Z ( ETR X 3600 s) (8)

Senescence

was calculated in pmol electrons m™> for every genotype
(maize) or even every plot (soybean) in every experiment
based on the ETR values calculated for every hour. The
growing season was defined as starting from germination 21
DAS and ending at senescence 21 d before harvest. PPFR
values were hourly averaged.

Conversion efficiency of intercepted light energy to
photochemical energy uptake

The €, can be calculated from seasonal ET, combining
Equations (7) and (8), relative to the intercepted light en-
ergy, which results in:

Germination

=Y o Fq' /Fmpredicted x PPFR)/ > PPFR

Senescence Senescence

where the term deer::;'cr;fc'gn (Fg'/F predicted % PPFR) is the
sum of the photochemical energy uptake of the intercepted

leaf area between germination and senescence, and

cermnatONPPER s the sum of intercepted sunlight energy

in the photosynthetic active range between germination
and senescence in pmol photons m~2 The g; is cancelled
from both sums, that is, €, is not dependent on €, The g,
was calculated for every genotype (maize) or every plot (soy-
bean) in every experiment. Note that when &, is calculated
with Responsec.pprg, it follows that:

€. o< Responsec,.pprr (10)

Germination

( F q//F m ;)redicted

(Responseppeg X PPFR?).

since in that case g
Senescence
Germination

x PPFR) equals E

Senescence

Energy content of biomass

Energy content of dried biomass was assumed to be 18 M)
kg™" in all samples (McKendry, 2002). Since no root biomass
data were available, it was approximated as 9% and 17% of
maize and soybean total biomass, respectively, as deter-
mined in Orddnez et al. (2020). Since no stover biomass for
the maize field data was available, it was approximated as
39% of the total biomass (Ordonez et al, 2020). In that way,
measured biomass per square meter was converted to total
biomass per square meter (in ] m~>). Conversion of PPFR to
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J s m™> was done by applying a factor of 0.219 umol
photons™' (Langhans et al., 1997).

Transduction efficiency of photochemical energy into
biomass

The €, was derived according to Equation (2) dividing the
derived total biomass per square meter by €, calculated

based on F//F, according to Equation (9), by
SemminiONDPER and by € assumed as 09 as described

above. The adjusted genotypic means of €, respective &
were calculated using the different experiments as fixed
effects.

Data availability

The data sets generated and analyzed for this study are avail-
able in the zipped supplemental data file The LIFT
(Supplemental Data S1), the weather (Supplemental Data S2),
the biomass (Supplemental Data S3), and the LI-COR
(Supplemental Data S4) data set.

Supplemental data

The following materials are available in the online version of
this article.

Supplemental Figure S1. Relative importance of environ-
mental and spectral coefficients for photosynthetic quantum
efficiency (Fq'/Fm’) in maize and soybean are shown.

Supplemental Figure S2. Photosynthetic quantum effi-
ciency (Fy'/F') of soybean and maize genotypes was mod-
eled with PPFR and related to biomass.

Supplemental Figure S3. Photosynthesis in maize and
soybean genotypes over time was correlated to their bio-
mass in five different environments.

Supplemental Figure S4. Observed and imputed spectral
variables for a subset of 7 d.

Supplemental Figure S5. Photosynthetic quantum effi-
ciency (Fy'/F') of soybean genotypes were predicted based
on half of the measuring days (training set) and correlated
with the data of the remaining days (validation set) in order
to assess prediction accuracy.

Supplemental Figure S6. ET was estimated over entire
growing seasons and correlated to biomass.

Supplemental Figure S7. Efficiency of photosynthetic ET
5ms after primary quinone reduction (F,'/F]') of soybean
and maize genotypes was related to temperature and
biomass.

Supplemental Table S1. Description of all experiments
with site, crop, genotype, treatment, year, sowing, and har-
vest data and the number of replicates (Rep).

Supplemental Data S1. Supplemental_Data_S1_LIFT_data.csv.

Supplemental Data S2. Supplemental Data_S2_Weather_datacsv.

Supplemental Data S3. Supplemental Data_S3_Biomass_data.csv.

Supplemental Data S4. Supplemental_Data_S4_LI-COR_datacsv.
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