001     902156
005     20220103172039.0
024 7 _ |a 10.3390/rs13214368
|2 doi
024 7 _ |a 2128/29612
|2 Handle
024 7 _ |a altmetric:119900419
|2 altmetric
024 7 _ |a WOS:000718576000001
|2 WOS
037 _ _ |a FZJ-2021-04065
082 _ _ |a 620
100 1 _ |a Morata, Miguel
|0 0000-0002-0537-6803
|b 0
|e Corresponding author
245 _ _ |a Emulation of Sun-Induced Fluorescence from Radiance Data Recorded by the HyPlant Airborne Imaging Spectrometer
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640768279_11761
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grewto maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yetfull-spectrum estimation methods such as the spectral fitting method (SFM) are computationallyexpensive. To bypass this computational load, this work aims to approximate the SFM-based SIFretrieval by means of statistical learning, i.e., emulation. While emulators emerged as fast surrogatemodels of simulators, the accuracy-speedup trade-offs are still to be analyzed when the emulationconcept is applied to experimental data. We evaluated the possibility of approximating the SFM-likeSIF output directly based on radiance data while minimizing the loss in precision as opposed to SFMbasedSIF. To do so, we implemented a double principal component analysis (PCA) dimensionalityreduction, i.e., in both input and output, to achieve emulation of multispectral SIF output basedon hyperspectral radiance data. We then evaluated systematically: (1) multiple machine learningregression algorithms, (2) number of principal components, (3) number of training samples, and(4) quality of training samples. The best performing SIF emulator was then applied to a HyPlantflight line containing at sensor radiance information, and the results were compared to the SFM SIFmap of the same flight line. The emulated SIF map was quasi-instantaneously generated, and a goodagreement against the reference SFM map was obtained with a R2 of 0.88 and NRMSE of 3.77%.The SIF emulator was subsequently applied to 7 HyPlant flight lines to evaluate its robustness andportability, leading to a R2 between 0.68 and 0.95, and a NRMSE between 6.42% and 4.13%. EmulatedSIF maps proved to be consistent while processing time was in the order of 3 min. In comparison, theoriginal SFM needed approximately 78 min to complete the SIF processing. Our results suggest thatemulation can be used to efficiently reduce computational loads of SIF retrieval methods.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 1
700 1 _ |a Morcillo-Pallarés, Pablo
|0 0000-0002-0970-9492
|b 2
700 1 _ |a Rivera-Caicedo, Juan Pablo
|0 0000-0003-3188-1448
|b 3
700 1 _ |a Verrelst, Jochem
|0 0000-0002-6313-2081
|b 4
773 _ _ |a 10.3390/rs13214368
|g Vol. 13, no. 21, p. 4368 -
|0 PERI:(DE-600)2513863-7
|n 21
|p 4368 -
|t Remote sensing
|v 13
|y 2021
|x 2072-4292
856 4 _ |u https://juser.fz-juelich.de/record/902156/files/remotesensing-13-04368.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902156
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-0537-6803
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172711
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0002-0970-9492
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0003-3188-1448
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0002-6313-2081
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21