000902160 001__ 902160 000902160 005__ 20240610120927.0 000902160 0247_ $$2doi$$a10.1016/j.cpc.2021.107978 000902160 0247_ $$2ISSN$$a0010-4655 000902160 0247_ $$2ISSN$$a1386-9485 000902160 0247_ $$2ISSN$$a1879-2944 000902160 0247_ $$2Handle$$a2128/28872 000902160 0247_ $$2altmetric$$aaltmetric:72431900 000902160 0247_ $$2WOS$$aWOS:000659129700003 000902160 037__ $$aFZJ-2021-04069 000902160 041__ $$aEnglish 000902160 082__ $$a530 000902160 1001_ $$00000-0001-7641-8030$$aOstmeyer, Johann$$b0 000902160 245__ $$aThe Ising model with Hybrid Monte Carlo 000902160 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2021 000902160 3367_ $$2DRIVER$$aarticle 000902160 3367_ $$2DataCite$$aOutput Types/Journal article 000902160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635940559_32340 000902160 3367_ $$2BibTeX$$aARTICLE 000902160 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000902160 3367_ $$00$$2EndNote$$aJournal Article 000902160 520__ $$aThe Ising model is a simple statistical model for ferromagnetism. There are analytic solutions for low dimensions and very efficient Monte Carlo methods, such as cluster algorithms, for simulating this model in special cases. However most approaches do not generalize to arbitrary lattices and couplings. We present a formalism that allows one to apply Hybrid Monte Carlo (HMC) simulations to the Ising model, demonstrating how a system with discrete degrees of freedom can be simulated with continuous variables. Because of the flexibility of HMC, our formalism is easily generalizable to arbitrary modifications of the model, creating a route to leverage advanced algorithms such as shift preconditioners and multi-level methods, developed in conjunction with HMC. 000902160 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000902160 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1 000902160 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000902160 7001_ $$0P:(DE-HGF)0$$aPetschlies, Marcus$$b1 000902160 7001_ $$00000-0003-4100-4289$$aPittler, Ferenc$$b2 000902160 7001_ $$0P:(DE-Juel1)188583$$aBerkowitz, Evan$$b3$$ufzj 000902160 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b4$$eCorresponding author$$ufzj 000902160 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2021.107978$$gVol. 265, p. 107978 -$$p107978$$tComputer physics communications$$v265$$x0010-4655$$y2021 000902160 8564_ $$uhttps://juser.fz-juelich.de/record/902160/files/Ostmeyer%20et%20al.%20-%202021%20-%20The%20Ising%20model%20with%20Hybrid%20Monte%20Carlo%20-%20Computer%20Physics%20Communications-1.pdf$$yRestricted 000902160 8564_ $$uhttps://juser.fz-juelich.de/record/902160/files/postprint.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000902160 909CO $$ooai:juser.fz-juelich.de:902160$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000902160 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Bonn$$b1 000902160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188583$$aForschungszentrum Jülich$$b3$$kFZJ 000902160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b4$$kFZJ 000902160 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000902160 9141_ $$y2021 000902160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000902160 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2019$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30 000902160 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger 000902160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30 000902160 920__ $$lyes 000902160 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000902160 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000902160 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x2 000902160 9801_ $$aFullTexts 000902160 980__ $$ajournal 000902160 980__ $$aVDB 000902160 980__ $$aUNRESTRICTED 000902160 980__ $$aI:(DE-Juel1)IAS-4-20090406 000902160 980__ $$aI:(DE-Juel1)JSC-20090406 000902160 980__ $$aI:(DE-Juel1)IKP-3-20111104 000902160 981__ $$aI:(DE-Juel1)IAS-4-20090406