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Abstract

The Ising model is a simple statistical model for ferromagnetism. There are analytic solutions for

low dimensions and very efficient Monte Carlo methods, such as cluster algorithms, for simulating

this model in special cases. However most approaches do not generalise to arbitrary lattices

and couplings. We present a formalism that allows one to apply Hybrid Monte Carlo (HMC)

simulations to the Ising model, demonstrating how a system with discrete degrees of freedom

can be simulated with continuous variables. Because of the flexibility of HMC, our formalism is

easily generalizable to arbitrary modifications of the model, creating a route to leverage advanced

algorithms such as shift preconditioners and multi-level methods, developed in conjunction with

HMC.

Keywords: Ising model, HMC, Hubbard-Stratonovich transformation, lattice Monte Carlo,

critical slowing down

1. Introduction

The Ising model is a simple model of ferromagnetism and exhibits a phase transition in di-

mensions d ≥ 2. Analytic solutions determining the critical temperature and magnetization are

known for d = 1 and 2 [? ], and in large dimensions the model serves as an exemplary test bed

for application of mean-field techniques. It is also a popular starting point for the discussion of

the renormalization group and calculation of critical exponents.

In many cases systems that are seemingly disparate can be mapped into the Ising model with

slight modification. Examples include certain neural networks [? ? ], percolation [? ? ? ], ice melt

ponds in the arctic [? ], financial markets [? ? ? ], and population segregation in urban areas[?

? ], to name a few. In short, the applicability of the Ising model goes well beyond its intended

goal of describing ferromagnetic behavior. Furthermore, it serves as an important pedagogical

tool—any serious student of statistical/condensed matter physics as well as field theory should be

well versed in the Ising model.
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The pedagogical utility of the Ising model extends into numerics as well. Stochastic lattice

methods and the Markov-chain Monte-Carlo (MCMC) concept are routinely introduced via applic-

ation to the Ising model. Examples range from the simple Metropolis-Hastings algorithm to more

advanced cluster routines, such as Swendsen-Wang [? ] and Wolff [? ] and the worm algorithm

of Prokof’ev and Svistunov [? ]. Because so much is known of the Ising model, it also serves as a

standard test bed for novel algorithms. Machine learning (ML) techniques were recently applied

to the Ising model to aid in identification of phase transitions and order parameters [? ? ? ? ? ].

A common feature of the algorithms mentioned above is that they are well suited for systems

with discrete internal spaces, which of course includes the Ising model. For continuous degrees of

freedom the hybrid Monte Carlo (HMC) algorithm [? ] is instead the standard workhorse. Lat-

tice quantum chromodynamics (LQCD) calculations, for example, rely strongly on HMC. Certain

applications in condensed matter physics now also routinely use HMC [? ? ? ]. Furthermore,

algorithms related to preconditioning and multi-level integration have greatly extended the effic-

acy and utility of HMC. With the need to sample posterior distributions in so-called big data

applications, HMC has become widespread even beyond scientific applications.

It is natural to ask, then, how to apply the numerically-efficient HMC to the broadly-applicable

Ising model. At first glance, the Ising model’s discrete variables pose an obstacle for smoothly

integrating the Hamiltonian equations of motion to arrive at a new proposal. However, in Ref. [?

] a modified version of HMC was introduced where sampling was done over a mixture of binary

and continuous distributions and successfully benchmarked to the Ising model in 1D and 2D.

In our work, we describe how to transform the Ising model to a completely continuous space in

arbitrary dimensions and with arbitrary couplings between spins (and not just nearest neighbor

couplings). Some of these results have already been published in Ref. [? ] without our knowledge

and have thus been ‘rediscovered’ by us. Yet, we propose a novel, more efficient approach for the

transformation and we perform a thorough analysis of said efficiency and the best choice of the

tunable parameter.

Furthermore, we hope this paper serves a pedagogical function, as a nice platform for introdu-

cing both HMC and the Ising model, and a clarifying function, demonstrating how HMC can be

leveraged for models with discrete internal spaces. So, for pedagogical reasons, our implementa-

tion of HMC is the simplest ‘vanilla’ version. As such, it does not compete well, in the numerical

sense, with the more advanced cluster algorithms mentioned above. However, it seems likely that

by leveraging the structure of the Ising model one could find a competitive HMC-based algorithm,

but we leave such investigations for the future.

This paper is organized as follows. In Section ?? we review the Ising model. We describe how

one can transform the Ising model, which resides in a discrete spin space, into a model residing

in a continuous space by introducing an auxiliary field and integrating out the spin degrees of
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freedom. The numerical stability of such a transformation is not trivial1, and we describe the

conditions for maintaining stability. With our continuous space defined, we show in Section ??

how to simulate the system with HMC. Such a discussion of course includes a cursory description

of the HMC algorithm. In Section ?? we show how to calculate observables within this continuous

space, since quantities such as magnetization or average energy are originally defined in terms of

spin degrees of freedom which are no longer present. We also provide numerical results of key

observables, demonstrating proof-of-principle. We conclude in Section ??.

2. Formalism

The Ising model on a lattice with N sites is described by the Hamiltonian

H = −J
∑
〈i,j〉

sisj −
∑
i

hisi (1)

= −1

2
Js>Ks − h · s (2)

where si = ±1 are the spins on sites i = 1, . . . , N , J the coupling between neighbouring spins

(denoted by 〈i, j〉), hi is the local external magnetic field, and the > superscript denotes the

transpose. We also define the symmetric connectivity matrix K containing the information about

the nearest neighbour couplings. The factor 1
2 on the nearest-neighbor term (??) accounts for the

double counting of neighbour pairs that arises from making K symmetric. If h is constant across

all sites we write

h = h0


1

1
...

1

 . (3)

We assume a constant coupling J for simplicity in this work. The same formalism developed here

can however be applied for site-dependent couplings as well. In this case we simply have to replace

the matrix JK by the full coupling matrix.

The partition sum over all spin configurations {si} ≡ {si | i = 1, . . . , N}

Z =
∑

{si}=±1

e−βH (4)

with the inverse temperature β is impractical to compute directly for large lattices because the

number of terms increases exponentially, providing the motivation for Monte Carlo methods. Our

goal is to rewrite Z in terms of a continuous variable so that molecular dynamics (MD) becomes

applicable. The usual way to eliminate the discrete degrees of freedom and replace them by

1Such stability considerations have been egregiously ignored in the past.
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continuous ones is via the Hubbard-Stratonovich (HS) transformation. For a positive definite

matrix A ∈ RN×N and some vector v ∈ RN , the HS relation reads

e
1
2 v
>Av =

1√
detA (2π)

N

∞∫
−∞

[
N∏
i=1

dφi

]
e−

1
2φ
>A−1φ+v·φ (5)

where we integrate over an auxiliary field φ. The argument of the exponent has been linearized

in v. In our case the matrix J ′K with

J ′ := βJ (6)

takes the place of A in the expression above. However, J ′K is not positive definite in general, nor

is −J ′K. The eigenvalues λ of K are distributed in the interval

λ ∈ [−n, n] (7)

where n is the maximal number of nearest neighbours a site can have. In the thermodynamic limit

N →∞ the spectrum becomes continuous and all values in the interval are reached. Thus the HS

transformation is not stable: the Gaussian integral with negative eigenvalues does not converge.

We have to modify the connectivity matrix in such a way that we can apply the HS transform-

ation. Therefore we introduce a constant shift C to the K matrix,

K̃ := K + C 1, (8)

where C has to have the same sign as J ′, by adding and subtracting the corresponding term in

the Hamiltonian. Now K̃ has the same eigenspectrum as K, but shifted by C . Thus if we choose

|C| > n, J ′K̃ is positive definite. We will take such a choice for granted from now on. For variable

coupling the interval (??) might have to be adjusted, but the eigenspectrum remains bounded

from below, so C can be chosen large enough to make J ′K̃ positive definite.

Now we can apply the HS transformation to the partition sum

Z =
∑

{si}=±1

e
1
2βJs

>K̃s− 1
2βJCs

2+βh·s (9)

= e−
1
2J
′CN

∑
{si}=±1

e
1
2J
′s>K̃s+h′·s (10)

= e−
1
2J
′CN

∑
{si}=±1

1√
det K̃ (2πJ ′)

N

∞∫
−∞

[
N∏
i=1

dφi

]
e−

1
2J′ φ

>K̃−1φ+(h′+φ)·s (11)

=
e−

1
2J
′CN√

det K̃ (2πJ ′)
N

∞∫
−∞

[
N∏
i=1

dφi

]
e−

1
2J′ φ

>K̃−1φ

[
N∏
i=1

2 cosh (h′i + φi)

]
(12)

= 2N
e−

1
2J
′CN√

det K̃ (2πJ ′)
N

∞∫
−∞

[
N∏
i=1

dφi

]
e−

1
2J′ φ

>K̃−1φ+
∑
i log cosh(h′i+φi) (13)
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where we used in (??) that s2
i = 1 for all i and defined h′ := βh in analogy with (??). In (??)

we performed the HS transformation and in (??) we explicitly evaluated the sum over all the

now-independent si, thereby integrating out the spins. After rewriting the cosh term in (??) we

are left with an effective action that can be used to perform HMC calculations. However, we do

not recommend using this form directly, as it needs a matrix inversion.

Instead, let us perform the substitution

φ =
√
J ′K̃ψ − h′ (14)

with the functional determinant
√
J ′
N

det K̃. This substitution is going to bring a significant

speed up and has not been considered in Ref. [? ]. It allows us to get rid of the inverse of K̃ in

the variable part of the partition sum

Z =

√(
2
π

)N
det K̃ e−

1
2J
′CN

∞∫
−∞

[
N∏
i=1

dψi

]
e
− 1

2ψ
>K̃ψ+ 1√

J′
ψ·h′− 1

2J′ h
′>K̃−1h′+

∑
i log cosh(

√
J′(K̃ψ)

i
) .

(15)

The only left over term involving an inversion remains in the constant h′>K̃−1h′. Fortunately

this does not need to be calculated during HMC simulations. We do need it, however, for the

calculation of some observables, such as the magnetisation (??), and for this purpose it can be

calculated once without any need for updates. Let us also remark that the inverse K̃−1 does not

have to be calculated exactly. Instead it suffices to solve the system of linear equations K̃x = h′

for x which can be done very efficiently with iterative solvers, such as the conjugate gradient (CG)

method [? ].

A further simplification can be achieved when the magnetic field is constant (??) and every

lattice site has the same number of nearest neighbours n0. Then we find that

K̃h′ = (n0 + C)h′ (16)

and thus

h′>K̃−1h′ = h′>
1

n0 + C
h′ =

N

n0 + C
h′20 . (17)

3. HMC

Hybrid Monte Carlo2 (HMC) [? ] requires introducing a fictitiousmolecular dynamics time and

conjugate momenta, integrating current field configurations according to Hamiltonian equations

2Sometimes ‘Hamiltonian Monte Carlo’, especially in settings other than lattice quantum field theory.
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of motion to make a Metropolis proposal. We multiply the partition sum Z (??) by unity, using

the Gaussian identity
1

(2π)N/2

∫ +∞

−∞

[
N∏
i=1

dpi

]
e−

1
2p

2
i = 1 (18)

where we have one conjugate momentum p for each field variable ψ in Z, and we sample con-

figurations of fields and momenta from this combined distribution. The conceptual advantage of

introducing these momenta is that we can evolve the auxiliary fields ψ with the HMC Hamilto-

nian H,

H =
1

2
p2 +

1

2
ψ>K̃ψ − 1√

J ′
ψ · h′ −

∑
i

log cosh
(√

J ′
(
K̃ψ

)
i

)
(19)

by integrating the equations of motion (EOM)

ψ̇ = +
∂H
∂p

= p (20)

ṗ = −∂H
∂ψ

= −K̃ψ +
1√
J ′
h′ +

√
J ′K̃ tanh

(√
J ′K̃ψ

)
(21)

where the tanh is understood element-wise.

Thus one can employ the Hybrid Monte Carlo algorithm to generate an ensemble of field

configurations by a Markov chain. Starting with some initial configuration ψ, the momentum p

is sampled according to a Gaussian distribution (??). The EOM are integrated to update all the

field variables at once. The integration of the differential equations, or the molecular dynamics, is

performed by a (volume-preserving) symmetric symplectic integrator (we use leap-frog here, but

more efficient schemes can be applied [? ? ]) to ensure an unbiased update. The equations of

motion are integrated one molecular dynamics time unit, which is held fixed for each ensemble,

to produce one trajectory through the configuration space; the end of the trajectory is proposed

as the next step in the Markov chain. If the molecular dynamics time unit is very short, the new

proposal will be very correlated with the current configuration. If the molecular dynamics time

unit is too long, it will be very expensive to perform an update.

The proposal is accepted with the Boltzmann probability min
(
1, e−∆H) where the energy

splitting ∆H = Hnew −Hold is the energy difference between the proposed configuration and the

current configuration. If our integration algorithm were exact, ∆H would vanish and we would

always accept the new proposal, by conservation of energy. The Metropolis-Hastings accept/reject

step guarantees that we get the correct distribution despite inexact numerical integration. So, if we

integrate with time steps that are too coarse we will reject more often. Finer integration ensures

a greater acceptance rate, all else being equal.

If the proposal is not accepted as the next step of our Markov chain, it is rejected and the

previous configuration repeats. After each accepted or rejected proposal the momenta are re-

freshed according to the Gaussian distribution (??) and molecular dynamics integration resumes,

to produce the next proposal.
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If the very first configuration is not a good representative of configurations with large weight,

the Markov chain will need to be thermalized—driven towards a representative place—by run-

ning the algorithm for some number of updates. Then, production begins. An ensemble of Ncf

configurations {ψn} is drawn from the Markov chain and the estimator of any observable O(ψ)

O =
1

Ncf

Ncf∑
n=1

O(ψn) (22)

converges to the expectation value

〈O〉 =
1

Z

√(
2
π

)N
det K̃ e−

1
2J
′CN

∞∫
−∞

[
N∏
i=1

dψi

]
O(ψ) e

− 1
2ψ
>K̃ψ+ 1√

J′
ψ·h′− 1

2J′ h
′>K̃−1h′+

∑
i log cosh(

√
J′(K̃ψ)

i
)

(23)

as the ensemble sizeNcf →∞, with uncertainties on the scale ofN−1/2
cf as long as the configurations

are not noticeably correlated—if their autocorrelation time (in Markov chain steps) is short enough.

Not much time has been spent on the tuning of C during this work. We expect that the choice

of C can influence the speed of the simulations. Clearly |C| must not be chosen too large because

in the limit |C| → ∞ the Hamiltonian can be approximated by

1

C
H =

1

2
ψ2 −

√
J ′
∑
i

|ψi|+O
(
C−1

)
(24)

with the minima

ψi = ±
√
J ′. (25)

Any deviation from a minimum is enhanced by the factor of C and is thus frozen out for large |C|.

This reproduces the original discrete Ising model up to normalisation factors. Plainly the HMC

breaks down in this case. As the limit is approached, the values for the ψi become confined to

smaller and smaller regions. The result is that HMC simulations can get stuck in local minima and

the time series is no longer ergodic—it cannot explore all the states of the Markov chain—which

may yield incorrect or biased results. From now on we use |C| = n+10−5; we later show the effect

of changing C in Figure ??.

A large coupling (or low temperature) J ′ introduces an ergodicity problem as well: as we

expect to be in a magnetized phase, all the spins should be aligned and flipping even one spin is

energetically disfavored even while flipping them all may again yield a likely configuration. This

case however is less problematic because there are only two regions with a domain wall between

them; the region with all ψi > 0 and the region with all ψi < 0. The ergodicity issue is alleviated by

proposing a global sign flip and performing a Metropolis accept/reject step every few trajectories,

similar to that proposed in Ref. [? ].
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4. Results

Let us again assume constant external field with strength h0 (??). Then the expectation value

of the average magnetisation and energy per site read

〈m〉 =
1

NZ

∂Z

∂h′
(26)

=
1

N

〈
1√
J ′

∑
i

ψi −
N

n0 + C

h′0
J ′

〉
(27)

=
〈ψ〉√
J ′
− 1

n0 + C

h′0
J ′
, (28)

〈βε〉 = − β

NZ

∂Z

∂β
(29)

=
1

2
CJ ′ +

1

n0 + C

h′0
2

2J ′
− h′0

2
√
J ′
〈ψ〉 −

√
J ′

2N

〈(
K̃ψ

)
· tanh

(√
J ′K̃ψ

)〉
(30)

where 〈ψ〉 = 〈ψi〉 for any site i due to translation invariance. Any other physical observables

can be derived in the same way. For example, higher-point correlation functions like spin-spin

correlators may be derived by functionally differentiating with respect to a site-dependent hi

(without the simplification of constant external field (??)). We stress here that, although C

appears in observables (as in the magnetization (??) and energy density (??)), the results are

independent of C—its value only influences the convergence rate.
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exact

Figure 1: Expectation value of the energy per site for the two dimensional periodic square lattice (left) and the
lattice with all-to-all coupling (right) for the HMC and the Metropolis-Hastings algorithms at critical coupling and
h = 0 with lattice sizes N .

In Figure ?? we demonstrate that the HMC algorithm3 indeed produces correct results. The

left panel shows the average energy per site at the critical point [? ] of the two-dimensional square

lattice with periodic boundary conditions. We choose to scale the number of integration steps per

trajectory with the lattice volume as Nstep = blogNc, which empirically leads to acceptance rates

between 70% and 80% for a broad range of lattice sizes and dimensions. The results from the HMC

simulations are compared to the results obtained via the local Metropolis-Hastings algorithm with

3Our code is publicly available under https://github.com/HISKP-LQCD/ising_hmc.
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the same number Ncf of sweeps (a sweep consists of N spin flip proposals). In addition we show

the leading order analytic results [? ] 〈βε〉 ≈ − log
(
1 +
√

2
) (√

2
2 −

1
3
√
N

)
+ O

(
N−1

)
. We not

only find that the results are compatible, but also that the errors of both stochastic methods are

comparable. The right panel shows the average energy per site in the case where the coupling is

no longer nearest neighbor, but the extreme opposite with all-to-all couplings. The Hamiltonian

we use in this case is, up to an overall constant, the “infinite-range” Ising model [? ]. This model

has analytic solutions for physical observables as a function of the number of lattice sites N which

we show for the case of the average energy (black line). We provide a description of this model,

as a well as a derivation of the exact solution for the average energy, in ??. Our numerical results

agree very well with the exact result.

1

10

100

10 100

τ i
nt

N

HMC
Metropolis-Hastings

1

10

10 100 1000

τ i
nt

N

HMC
Metropolis-Hastings

Figure 2: Integrated autocorrelation time of |m| for the HMC and the Metropolis-Hastings algorithms at critical
coupling and h = 0 for the d = 2 (left) and d = 3 (right) dimensional periodic square lattice with size N . The lines
are fits of the form τint = αN

2
d for N > 10.

Since it is not the aim of this work to present physical results, but rather to introduce an

alternative formulation for simulating the Ising model and generalizations thereof, we do not

compute other observables explicitly, nor do we investigate their dependence on other parameters.

On the other hand it is not sufficient that the algorithm in principle produces correct results—we

must also investigate its efficiency. A good measure for the efficiency is the severity of critical

slowing down—that the integrated autocorrelation time4 τint diverges at the critical point as some

power γ of the system size τint ∝ Nγ . One could expect that, being a global update algorithm,

the HMC does not suffer as much from critical slowing down as Metropolis-Hastings. Figure ??

however shows that both algorithms have dynamic exponent z ≡ dγ ≈ 2 in d = 2 and d = 3

dimensions (see Ref. [? ] and references within for a discussion of the critical coupling and

exponents in d = 3). Still one has to keep in mind that a Metropolis-Hastings sweep takes less

time than an HMC trajectory and the HMC trajectories become logarithmically longer as N grows.

4τint and its error have been calculated according to the scheme proposed in Ref [? ].
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In our implementation we find the proportionality

THMC ≈ 4NstepTMH (31)

where THMC is the time required for one HMC trajectory and TMH the time required for one

Metropolis-Hastings sweep.

Last but not least let us study the impact of the shift parameter C on the efficiency of the

algorithm by means of the autocorrelation for the absolute magnetization |m|. As explained

earlier, when C becomes very large the potential becomes very steep around the local minima

(??). When this localization becomes important we expect the autocorrelation to increase with

C, as transitions from one local minimum to another become less likely. This behaviour can be

seen in Figure ??. We find that the autocorrelation is constant within errors below some critical

value, in this case Ccrit ≈ n+ 1, and increases rapidly for larger C. So, as long as the potential is

not too deep HMC can explore the whole configuration space. A very large C causes wells from

which it is difficult to escape, while Cs just large enough to ensure stability yield very flat, smooth

potentials. We see in Fig. ?? that as long as the shift is small |C| − n � 1 its specific value is

irrelevant and does not need to be tuned.

101

102

103

104

105

10−5 10−4 10−3 10−2 10−1 1 101

τ i
nt

C − n

HMC

Figure 3: Integrated autocorrelation time of |m| for the HMC algorithm at critical coupling and h = 0 for the
d = 2 dimensional periodic square lattice with size N = 152 against the shift C reduced by the number of nearest
neighbours n.

5. Conclusion

In this paper we showed how to apply the HMC algorithm to the Ising model, successfully

applying an algorithm that uses only continuous state variables to a system with discrete degrees

of freedom. We find that the HMC algorithm generalises the Ising model very well to arbitrary

geometries without much effort. It has been presented here in the most simple form. In this simple

form the HMC is an extremely inefficient algorithm if applied to the Ising model. Although more

flexible than the most efficient methods, such as cluster algorithms, it loses as compared even to

the Metropolis-Hastings algorithm. The coefficient by which the Metropolis-Hastings algorithm
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surpasses the HMC decreases with dimension, so that HMC might be preferable in case of an

extremely high number of nearest neighbours—in the case of less local coupling, for example.

Moreover, for physical systems that suffer from sign problems, one may hope to leverage

complex Langevin, Lefschetz thimble, or other contour-optimizing methods (for a dramatically

incomplete set of examples, consider, respectively, Ref. [? ? ], Refs. [? ? ? ], and Refs. [? ? ? ]

and references therein). The formulation in terms of continuous variables presented here is well-

suited for these methods, while the methods that deal directly with the original discrete variables

such as the Metropolis-Hastings, cluster, and worm algorithms, for example, are non-starters. In

that sense, our exact reformulation and HMC method can be seen as the first step towards solving

otherwise-intractable problems.

The HMC algorithm could be optimised by more efficient integrators and different choices of C,

just to name the most obvious possibilities. Many more methods have been developed to improve

HMC performance and it is expected that some of them could also speed up the Ising model.
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Appendix A. The “infinite-range Ising model”

For the calculations shown on the right panel of Figure ?? we used the following Hamiltonian,

H(s) = −1

2

J

N

∑
i 6=j

sisj − h
∑
i

si (A.1)

=
1

2
J − 1

2

J

N

∑
i,j

sisj − h
∑
i

si , (A.2)

where in the second line we used the fact that s2
i = 1 ∀i and there is no restriction in the sum

over spin couplings. With the exception of the self-energy term 1
2J in the second line above, the

remaining terms constitute the “infinite-range Ising model”[? ]. From now on we assume that

J > 0, but a similar calculation can be done for J < 0.

The partition function for this Hamiltonian can be exactly determined. Applying the HS

transformation as described in the equations leading up to the partition sum (??) one obtains

Z = e
1
2βJ

∫ ∞
−∞

dφ√
2πβĴ

e
− φ2

2βĴ [2 cosh(βh± φ)]N , (A.3)
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where we define Ĵ = J/N . Expanding the cosh terms into exponentials allows one to formally

integrate over the HS fields, obtaining

Z = e
1
2βJ

N∑
n=0

N
n

 f(βĴ, βh,N − 2n) , (A.4)

and

f(βĴ, βh, x) ≡ e 1
2βĴx

2+βhx . (A.5)

Using the definition of the energy density (??) with the partition sum (??) gives our analytic

expression for the internal energy,

〈βε〉 =
1

2
βĴ − β

NZ

N∑
n=0

N
n

[1

2
Ĵ(N − 2n)2 + h(N − 2n)

]
f(βĴ, βh,N − 2n) . (A.6)

Note the relative sign difference between the terms on the right hand side above. For sufficiently

small N the self-energy term wins out, otherwise the second term dominates.

An analogous calculation for the magnetisation with an extrapolation of N →∞ leads to the

critical point βJ = 1. We used this value in Figure ??.
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