000902162 001__ 902162
000902162 005__ 20211130111104.0
000902162 0247_ $$2doi$$a10.1007/s11103-021-01194-0
000902162 0247_ $$2ISSN$$a0167-4412
000902162 0247_ $$2ISSN$$a1573-5028
000902162 0247_ $$2Handle$$a2128/28869
000902162 0247_ $$2pmid$$a34677706
000902162 0247_ $$2WOS$$aWOS:000710377900001
000902162 037__ $$aFZJ-2021-04071
000902162 082__ $$a580
000902162 1001_ $$0P:(DE-Juel1)185905$$aReimer, Julia J.$$b0
000902162 245__ $$aTomato leaves under stress: a comparison of stress response to mild abiotic stress between a cultivated and a wild tomato species
000902162 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2021
000902162 3367_ $$2DRIVER$$aarticle
000902162 3367_ $$2DataCite$$aOutput Types/Journal article
000902162 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635864192_9093
000902162 3367_ $$2BibTeX$$aARTICLE
000902162 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902162 3367_ $$00$$2EndNote$$aJournal Article
000902162 520__ $$aTomato is one of the most produced crop plants on earth and growing in the fields and greenhouses all over the world. Breeding with known traits of wild species can enhance stress tolerance of cultivated crops. In this study, we investigated responses of the transcriptome as well as primary and secondary metabolites in leaves of a cultivated and a wild tomato to several abiotic stresses such as nitrogen deficiency, chilling or warmer temperatures, elevated light intensities and combinations thereof. The wild species responded different to varied temperature conditions compared to the cultivated tomato. Nitrogen deficiency caused the strongest responses and induced in particular the secondary metabolism in both species but to much higher extent in the cultivated tomato. Our study supports the potential of a targeted induction of valuable secondary metabolites in green residues of horticultural production, that will otherwise only be composted after fruit harvest. In particular, the cultivated tomato showed a strong induction in the group of mono caffeoylquinic acids in response to nitrogen deficiency. In addition, the observed differences in stress responses between cultivated and wild tomato can lead to new breeding targets for better stress tolerance.
000902162 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902162 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902162 7001_ $$0P:(DE-Juel1)129410$$aThiele, Björn$$b1
000902162 7001_ $$00000-0001-5651-2257$$aBiermann, Robin T.$$b2
000902162 7001_ $$0P:(DE-Juel1)168454$$aJunker-Frohn, Laura V.$$b3
000902162 7001_ $$0P:(DE-Juel1)129419$$aWiese-Klinkenberg, Anika$$b4
000902162 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b5
000902162 7001_ $$0P:(DE-HGF)0$$aWormit, Alexandra$$b6$$eCorresponding author
000902162 773__ $$0PERI:(DE-600)1475712-6$$a10.1007/s11103-021-01194-0$$gVol. 107, no. 3, p. 177 - 206$$n3$$p177 - 206$$tPlant molecular biology$$v107$$x1573-5028$$y2021
000902162 8564_ $$uhttps://juser.fz-juelich.de/record/902162/files/Reimer2021_Article_TomatoLeavesUnderStressACompar.pdf$$yOpenAccess
000902162 909CO $$ooai:juser.fz-juelich.de:902162$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902162 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185905$$aForschungszentrum Jülich$$b0$$kFZJ
000902162 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129410$$aForschungszentrum Jülich$$b1$$kFZJ
000902162 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168454$$aForschungszentrum Jülich$$b3$$kFZJ
000902162 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129419$$aForschungszentrum Jülich$$b4$$kFZJ
000902162 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b5$$kFZJ
000902162 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902162 9141_ $$y2021
000902162 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-31
000902162 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902162 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902162 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-31$$wger
000902162 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT MOL BIOL : 2019$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000902162 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000902162 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000902162 920__ $$lyes
000902162 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
000902162 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000902162 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x2
000902162 980__ $$ajournal
000902162 980__ $$aVDB
000902162 980__ $$aUNRESTRICTED
000902162 980__ $$aI:(DE-Juel1)IBG-4-20200403
000902162 980__ $$aI:(DE-Juel1)IBG-2-20101118
000902162 980__ $$aI:(DE-Juel1)IBG-3-20101118
000902162 9801_ $$aFullTexts