Conference Presentation (Invited) FZJ-2021-04079

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Caloric materials for energy-efficient cooling



2021

LENS webinar: The role of neutron science in securing a sustainable future, online eventonline event, online event, 3 Nov 2021 - 3 Nov 20212021-11-032021-11-03

Abstract: Domestic and industrial refrigeration applications contribute a substantial part to mankinds energy consumption. New technologies based on solid state caloric effects, such as magnetocaloric, barocaloric, elastocaloric and electrocaloric effect, promise considerable efficiency gains as compared to today’s vapor compression technology. Within our research we aim for a better understanding of the relation between the material structure and dynamics to guide a sustainable material design.In caloric materials, applied fields (e.g. magnetic, electric, pressure, strain) lead to changes in entropy and in the adiabatic temperature. The observed caloric effects form the basis of the caloric refrigeration cycles. We are interested in the fundamental mechanisms of these caloric effects, which are not yet fully understood. In particular, we studied the magnetocaloric effect in the family of compounds Mn5-xFexSi3.Neutron scattering experiments were crucial for the elucidation of the magnetic and crystalline structures and for the distinction of Mn and Fe [1]. In addition, inelastic neutron scattering investigations revealed that the application of a magnetic field induces (suppresses) fluctuations in the materials. These fluctuations are closely related to the inverse (direct) magnetocaloric effect observed in these compounds [2].[1] N. Maraytta et al., J. Appl. Phys. 128, 103903, 2020 ; A. Eich et al., Mater. Res. Express 6, 096118, 2019; P. Hering, et al.,Chem. Mater. 27, 7128, 2015[2] N. Biniskos, et al., Phys Rev B. 96, 104407, 2017; Biniskos et. al. Phys. Rev. Letters 120, 257205, 2018.


Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)

Appears in the scientific report 2021
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Conference Presentations
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database

 Record created 2021-11-02, last modified 2024-05-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)