000902188 001__ 902188
000902188 005__ 20240711092243.0
000902188 0247_ $$2doi$$a10.1002/maco.202112371
000902188 0247_ $$2ISSN$$a0043-2822
000902188 0247_ $$2ISSN$$a0947-5117
000902188 0247_ $$2ISSN$$a1521-4176
000902188 0247_ $$2Handle$$a2128/29606
000902188 0247_ $$2altmetric$$aaltmetric:108526427
000902188 0247_ $$2WOS$$aWOS:000667449700001
000902188 037__ $$aFZJ-2021-04085
000902188 082__ $$a670
000902188 1001_ $$00000-0003-1284-7287$$aHolländer, Christian$$b0$$eCorresponding author
000902188 245__ $$aHot corrosion of TBC‐coated components upon combustion of low‐sulfur fuels
000902188 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2021
000902188 3367_ $$2DRIVER$$aarticle
000902188 3367_ $$2DataCite$$aOutput Types/Journal article
000902188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640339417_21679
000902188 3367_ $$2BibTeX$$aARTICLE
000902188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902188 3367_ $$00$$2EndNote$$aJournal Article
000902188 520__ $$aGas turbine reliability is a crucial requirement for passenger safety in aviation and a secure energy supply. Hence, corrosive degradation of combustor parts, vanes, and blades in gas turbines must be prevented. One of the most severe forms of corrosion is alkali-sulfate-induced hot corrosion, which is associated with internal sulfidation of components and is usually anticipated to fade in importance in the absence of sulfur. However, the literature suggests that hot corrosion might still occur in low-sulfur combustion gases. In this study, established thermodynamic modeling methods are used to analyze the low-sulfur hot corrosion regime. Liquid sodium chromate is found to be stable in these conditions. A comparison of calculation results and engine findings suggests that high alkali levels can negatively impact thermal barrier coating life even if sulfur is absent in the fuel. Laboratory tests are carried out to validate the chromate formation on MCrAlY-coated specimens. It is shown that molten sodium chromate can alter the oxidation behavior of MCrAlY, promoting the formation of voluminous spinel. This represents a new and different form of hot corrosion compared to type I hot corrosion.
000902188 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000902188 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902188 7001_ $$0P:(DE-HGF)0$$aKiliani, Stefan$$b1
000902188 7001_ $$0P:(DE-HGF)0$$aStamm, Werner$$b2
000902188 7001_ $$0P:(DE-HGF)0$$aLüsebrink, Oliver$$b3
000902188 7001_ $$0P:(DE-HGF)0$$aHarders, Harald$$b4
000902188 7001_ $$0P:(DE-Juel1)129810$$aWessel, Egbert$$b5
000902188 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b6
000902188 7001_ $$0P:(DE-Juel1)129795$$aSingheiser, Lorenz$$b7
000902188 773__ $$0PERI:(DE-600)1481051-7$$a10.1002/maco.202112371$$gVol. 72, no. 10, p. 1643 - 1655$$n10$$p1643 - 1655$$tMaterials and corrosion$$v72$$x1521-4176$$y2021
000902188 8564_ $$uhttps://juser.fz-juelich.de/record/902188/files/Materials%20Corrosion%20-%202021%20-%20Holl%20nder%20-%20Hot%20corrosion%20of%20TBC%25u2010coated%20components%20upon%20combustion%20of%20low%25u2010sulfur%20fuels.pdf$$yOpenAccess
000902188 909CO $$ooai:juser.fz-juelich.de:902188$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129810$$aForschungszentrum Jülich$$b5$$kFZJ
000902188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b6$$kFZJ
000902188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129795$$aForschungszentrum Jülich$$b7$$kFZJ
000902188 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000902188 9141_ $$y2021
000902188 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000902188 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000902188 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000902188 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902188 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000902188 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000902188 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000902188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902188 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000902188 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2021-01-28
000902188 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000902188 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000902188 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000902188 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000902188 9801_ $$aFullTexts
000902188 980__ $$ajournal
000902188 980__ $$aVDB
000902188 980__ $$aI:(DE-Juel1)IEK-2-20101013
000902188 980__ $$aUNRESTRICTED
000902188 981__ $$aI:(DE-Juel1)IMD-1-20101013