000902189 001__ 902189
000902189 005__ 20240711092249.0
000902189 0247_ $$2doi$$a10.1016/j.fuel.2021.121114
000902189 0247_ $$2ISSN$$a0016-2361
000902189 0247_ $$2ISSN$$a1873-7153
000902189 0247_ $$2WOS$$aWOS:000686596000004
000902189 037__ $$aFZJ-2021-04086
000902189 082__ $$a660
000902189 1001_ $$0P:(DE-Juel1)171689$$aSchupsky, Jan Peter$$b0
000902189 245__ $$aCrystal morphology data for viscosity modelling of fuel slags – Supplementation of spinel phase and validation by crystallisation in entrained flow gasifiers
000902189 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000902189 3367_ $$2DRIVER$$aarticle
000902189 3367_ $$2DataCite$$aOutput Types/Journal article
000902189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714629290_32508
000902189 3367_ $$2BibTeX$$aARTICLE
000902189 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902189 3367_ $$00$$2EndNote$$aJournal Article
000902189 520__ $$aViscosity modelling is crucial to estimate the flow behaviour of slag in gasifiers. However, viscosity modelling of partly crystallised slags cannot yet be performed satisfactorily. This contribution proceeds with a new approach of ascertaining the crystal phase by crystallisation investigations. The characteristic crystal morphology of spinel was defined, based on its crystallographic nature and the results of quenching and confocal laser scanning microscope (CLSM) experiments. Crystal morphology datasets of spinel, anorthite, melilite and olivine phase were provided. The postulated crystal morphologies were validated by investigations of real PiTER and BOOSTER pilot plant gasifier slags to ensure the transferability from recent and previous experiments to industrial applications. Therefore, blends of coal and biomass fuels with diverse compositions from the “Solid Fuel Entrained Flow Gasification Database” were used. It was succeeded to prove that experimental crystal morphology results align well with the crystal shapes from the pilot plant slags and reference data. Accordingly, the recent and previous crystal morphology results can be directly applied to industrial applications. This validation furthermore proves that the crystal morphologies of the investigated phases are characteristic for each phase, independently of the slag composition in which they crystallise in. A literature review concludes that the three most abundant phases: anorthite, melilite and spinel of typical crystallising gasifier slags are covered with the provided morphology datasets. The collection of these datasets represents a crystal morphology database, which can be used to enhance existing viscosity models and apply them for partly crystallised slags in industrial entrained flow gasifiers.
000902189 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000902189 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
000902189 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902189 7001_ $$0P:(DE-HGF)0$$aNetter, Tobias$$b1
000902189 7001_ $$0P:(DE-Juel1)145147$$aWu, Guixuan$$b2$$ufzj
000902189 7001_ $$0P:(DE-HGF)0$$aSpliethoff, Hartmut$$b3
000902189 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b4$$eCorresponding author$$ufzj
000902189 773__ $$0PERI:(DE-600)1483656-7$$a10.1016/j.fuel.2021.121114$$gVol. 303, p. 121114 -$$p121114 -$$tFuel$$v303$$x0016-2361$$y2021
000902189 8564_ $$uhttps://juser.fz-juelich.de/record/902189/files/Crystal%20morphology%20-%20Schupsky.pdf$$yRestricted
000902189 909CO $$ooai:juser.fz-juelich.de:902189$$pVDB
000902189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145147$$aForschungszentrum Jülich$$b2$$kFZJ
000902189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b4$$kFZJ
000902189 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000902189 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
000902189 9141_ $$y2021
000902189 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUEL : 2019$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000902189 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFUEL : 2019$$d2021-01-30
000902189 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000902189 980__ $$ajournal
000902189 980__ $$aVDB
000902189 980__ $$aI:(DE-Juel1)IEK-2-20101013
000902189 980__ $$aUNRESTRICTED
000902189 981__ $$aI:(DE-Juel1)IMD-1-20101013