000902192 001__ 902192
000902192 005__ 20240711092300.0
000902192 0247_ $$2doi$$a10.1016/j.calphad.2021.102328
000902192 0247_ $$2ISSN$$a0364-5916
000902192 0247_ $$2ISSN$$a1873-2984
000902192 0247_ $$2WOS$$aWOS:000685310300005
000902192 037__ $$aFZJ-2021-04089
000902192 082__ $$a540
000902192 1001_ $$0P:(DE-Juel1)173866$$aWang, Yaping$$b0$$eCorresponding author
000902192 245__ $$aExperimental study coupled with thermodynamic assessment of the NiSO4–K2SO4 quasi binary system
000902192 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000902192 3367_ $$2DRIVER$$aarticle
000902192 3367_ $$2DataCite$$aOutput Types/Journal article
000902192 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714651396_32500
000902192 3367_ $$2BibTeX$$aARTICLE
000902192 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902192 3367_ $$00$$2EndNote$$aJournal Article
000902192 520__ $$aThermodynamic properties of the NiSO4–K2SO4 system play significant roles in various applications, e. g. in gas turbine components. In these components, Ni-base superalloys and coatings often suffer from the so-called hot corrosion induced by alkali sulphate deposits. In the present work, the phase equilibria in the system NiSO4–K2SO4 were experimentally determined for the first time using differential thermal analysis (DTA), dilatometry (DiL) and X-ray diffraction method (XRD). Two eutectic points and two stoichiometric compounds, K2Ni2(SO4)3 and K2Ni(SO4)2, were found in this system. The temperature and composition of the lower eutectic were determined to be 642 °C and 40 mol.% NiSO4, respectively. Another eutectic between NiSO4 and K2Ni2(SO4)3 was found at 819 °C, and the corresponding composition is around 75 mol.% NiSO4 and 25 mol. % K2SO4. Based on the obtained experimental data, the NiSO4–K2SO4 system was thermodynamically assessed using the CALPHAD methodology. The modified associate species model was used for the description of the liquid phase. Using the optimized dataset, the calculated phase diagram showed a good agreement with the experimental results. This dataset extends the previously developed general sulphate database including alkali- and alkaline-earth sulphates (CaSO4–MgSO4–Na2SO4–K2SO4) with the addition of NiSO4.
000902192 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000902192 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902192 7001_ $$0P:(DE-Juel1)159377$$aSergeev, Dmitry$$b1
000902192 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, Elena$$b2$$ufzj
000902192 7001_ $$0P:(DE-Juel1)156565$$aPillai, Rishi$$b3
000902192 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b4$$ufzj
000902192 7001_ $$0P:(DE-Juel1)129766$$aNaumenko, Dmitry$$b5$$ufzj
000902192 773__ $$0PERI:(DE-600)1501512-9$$a10.1016/j.calphad.2021.102328$$gVol. 74, p. 102328 -$$p102328 -$$tCalphad$$v74$$x0364-5916$$y2021
000902192 8564_ $$uhttps://juser.fz-juelich.de/record/902192/files/Experimental%20study%20-%20Wang.pdf$$yRestricted
000902192 909CO $$ooai:juser.fz-juelich.de:902192$$pVDB
000902192 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173866$$aForschungszentrum Jülich$$b0$$kFZJ
000902192 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159377$$aForschungszentrum Jülich$$b1$$kFZJ
000902192 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b2$$kFZJ
000902192 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b4$$kFZJ
000902192 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129766$$aForschungszentrum Jülich$$b5$$kFZJ
000902192 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000902192 9141_ $$y2021
000902192 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCALPHAD : 2019$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902192 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000902192 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000902192 980__ $$ajournal
000902192 980__ $$aVDB
000902192 980__ $$aI:(DE-Juel1)IEK-2-20101013
000902192 980__ $$aUNRESTRICTED
000902192 981__ $$aI:(DE-Juel1)IMD-1-20101013